Exatic duality and hegher speiss

Nicolas Boulanger - Physique de l'Univers, Champs et Gravitation , UMONS

Based on 2012.11356 (JHEP) in callaboration with Vietor Leken (Impenial college London \& AEI Potrdam) and wrk in collaboration with Vietor Lekan, Andrea Campoleoni and Zhenga Skvortsav (UNONS)

June 4 - Querk 2020 online workshops 2021
"Integrability, Holograply, Highan- spoin Gravity and strings" Dedicated to A.D.Sakharev's sentennial

Plan of talk

1) Introduction \& motivations
2) Results on the double-dual graviton and higher duals of vector field
2.1) Double dualisation of a massless vector in $n=4: \square \longmapsto \square$
2.2) Ducuble dualisation of spins $\quad h_{a b} \sim \square$ in $n=5$ into $D \sim$ \square
3) Higher (or enate) dualisation of the 3D graviton and scalar \rightarrow spin-3 gauge field
3.1) Higher dualisation of graviton in 3D
3.2) Higher dualisation of scalar
in 3D
(1) Introduction-motivations

Duality in gravity n Hull's warks (circa 2000) on $N_{6}=(4,0)$ thary and simultaneausly West's e_{11} proposal [2001]
\hookrightarrow In these works, a gauge field

$$
\begin{aligned}
C_{[n-3,1]} \quad \leadsto C_{a_{1} \ldots a_{n-3}, b}=C_{\left[a_{1} \ldots a_{n-3}\right], b} \quad \text { s.t. } \quad C_{\left[a_{1} \ldots a_{n-3}, b\right]} \equiv 0 \\
\text { i.e. } \quad C_{[n-2-1,1]} \sim \prod_{n-3} \text { of } G L(n) \text { appears in Minkauski spacetime } \mathbb{R}^{1, n-1}
\end{aligned}
$$

that propagates the d.e.f. of Fierz-Pauli's graviton $h_{a b}$ s.t. $\eta^{b d} K_{a b, c d}(k)=0$.
Hull's twisted on-shell duality, relating $K_{a_{1} \ldots a_{n-2}} b_{1} b_{2}:=\partial_{\left[a_{1}\right.} \partial^{i b_{1}} C_{\left.\left.a_{2} \ldots a_{n-2}\right]_{2}\right]}$ to $\quad K_{a b,}^{c d}:=-\frac{1}{2} \partial_{[a} \partial^{c} \hbar_{b j}^{d J} \quad$ via $\quad K_{[n-2,2]}=*_{1} K_{[2,2]}$.

In same work [Hull:2001] a field

$$
D_{[n-3, n-3]} \sim \prod_{n-3} \quad \text { of } G l(n) \quad \quad \underset{n=5}{ } \quad D_{[2,2]} \sim \square
$$

was introduced with field equations $\operatorname{Tr}_{r}^{n-3} K_{[n-2, n-2]}(D)=0 \quad \underset{n=5}{ } \quad T_{r}^{2} K_{[3,3]}=0$

Twisted duality with $h_{\text {ab }}: \quad K_{[n-2, n-2]}(D)=*_{1} *_{2} K_{[2,2]}(h) \quad \underset{n=5}{\longrightarrow} \quad K_{[3,3]}=*_{1} *_{2} K_{[2,2]}(h)$
ET $\quad d_{1}^{+} K_{[2,2]} \equiv 0 \quad \Longleftrightarrow \quad d_{1} K_{[3,3]}=0 \quad \Leftrightarrow \quad K_{[3,3]}=d_{1} d_{2} D_{[2,2]}=: K_{[3,3]}$ (D) BIT - [Dubai Kilts - Hemeooux zoos]

But $\quad \operatorname{Tr} K_{[2,2]}=0$ (ET) $\longleftrightarrow \operatorname{Tr}_{r} *_{1} *_{2} K_{[3,3]}=0 \Leftrightarrow T_{r}^{2} K_{[3,3]}=0$ (ET) $E_{0} M$ for D.
Field equations mapped to Field equations (and not on Bcianchi identities).
In presence of sources, Hull argued that $D_{[2,2]}$ couples to the usual $T_{a b}$ stress tenser conforming that $D_{[2,2]}$ is, on-shell, an avatar of $h_{a b}$.

Indeed, from twisted_duality $K_{[3,3]}(D)=*_{1} *_{2} K_{[2,2]}(h)$. (k)

$$
\begin{align*}
& K_{[3,3]}(D)=d_{1} d_{2} D_{[2,2]}=*_{1} *_{2} d_{1} d_{2} h_{[1,1]} \propto \eta_{[1,1]} d_{1} d_{2} h_{[1,1]} \quad(\text { since } n=5) \\
& \Leftrightarrow \quad d_{1} d_{2}\left(D_{[2,2]}-a \eta_{[1,1]} h_{[1,1]}\right)=0 \quad a \in \mathbb{R}_{0} \\
& \Leftrightarrow \quad D_{[2,2]}=a \eta_{[1,1]} h_{[1,1]}+d^{[2]} \xi_{[2,1]} \quad \text { (**) } \tag{**}
\end{align*}
$$

\Rightarrow When the E oMs for $h_{a b}$ Fierz_Pauli are satisfied (since twisted on-shell duality (*) was used),
then the $D_{[8,2]}$-field is conformally flat up to a gauge transformation (**)
[Marc H., Victor Lekeu and Amours Leonard 1909.12706]
Therefore, inverting (**) to express $h_{[1,1]}=H_{[1,1]}(T r D, \xi)$ and plugging in $S^{F P}\left[H_{a b}(\operatorname{Tr}, \xi)\right]$ gives field equations equivalent to $(* *)$.
\Rightarrow The traceless part of $D_{[2,2]}$ does not enter this action.

However, before [Mar c-Victor. Amany 2019]'s note on the double -dual graviton, an action principle had been proposed for a $D_{[r, 2]}$ gauge field (plus other fields) that propagates the degrees of freedom of a single graviton:
N.B, Paul Cook, Mica Ponomarev [2012]
"Off-shell Hodge dualities in linearized gravity and E_{11} "

- In the paper 2012.11356 with Victor Liken, the first thing done was to clarify the non-triviality of the action proposed earlier with P. Cook and D. Ponomaver.
(2) Results on the doceble-dual graviton and higher duals of vector field
2.1) Double dualisation of a massless vector [$N . B$, , P. Sundell, P. West 2015]

Idea : A_{b} viewed as a $A_{[0,1]}$ bi-form

$$
A_{[0,1]} \underset{\substack{\text { double } \\ \text { dualize }}}{ } C_{[n-0-2, n-1-2]} \underset{\substack{\bar{l}=4}}{ } C_{[2,1]} \sim \square \text { or } n=3: C_{[1,1]} \sim
$$

- Starts from Maxwell and integrate by part: $\quad S\left[A_{\mu}\right]=-\frac{1}{2} \int d^{n} x\left(\partial_{a} A_{b} \partial^{a} A^{b}-\partial_{a} A^{a} \partial_{b} A^{b}\right)$
- Parent action $S\left[Y^{-11}, P_{i}\right]=\int d^{n} x\left(P_{a i b} \partial_{c} y^{\text {carib }}-\frac{1}{2} P_{a i b} P^{a i b}+\frac{1}{2} P^{a l}{ }_{a} P_{b} b^{b}\right)$

$$
\begin{aligned}
& \cdot \frac{\delta S[y, p]}{\delta P_{a, b}} \approx 0 \Leftrightarrow \partial_{c} y^{c a 1 b}-p^{a i b}+\eta^{a b} p_{c 1} \approx 0 \overbrace{c}^{T_{r}} \partial_{c} y^{c a l} a+(n-1) p_{a}^{a 1} \approx 0 \Leftrightarrow p_{a}^{a l}=\frac{1}{1-n} \partial_{c} y^{\text {cal }} \\
& p_{a}^{a, b} \approx \partial_{c} y^{\text {cab }}-\eta^{a b} \frac{1}{n-1} \partial_{c} y^{c d l} d
\end{aligned}
$$

substitute to get

$$
S\left[P_{a, b}\right]=\int d^{n} x\left[\frac{1}{2} \partial_{c} y^{\text {caib }} \partial_{d} y_{a \mid b}^{d}-\frac{1}{2(n-1)} \partial_{a} y_{b}^{a b 1} b\right]
$$

. From $\quad S\left[P_{a, b}\right]=\int d^{n} x\left[\frac{1}{2} \partial_{c} y^{\text {call }} \partial_{d} y_{a \mid b}^{d}-\frac{1}{2(n-1)} \partial_{a} y_{b}^{a b 1}\right]$
invariant under $\quad \delta Y^{a b l}{ }_{c}=\delta_{c}^{[a} \partial^{b J} \lambda+\partial_{d} \gamma^{a b d}{ }_{c}$, one decomposes

$$
Y_{c}^{a b 1}=X_{c}^{a b 1}+\delta_{c}^{c a} z^{b]}, \quad X^{a b 1} \equiv 0
$$

and

- Hadge_dualise in $n=4: \quad X^{a b 1} c \quad \longleftrightarrow T_{a b i c} \sim$| a | E |
| :--- | :--- |
| b | |

$$
\text { with gauge transformations }\left\{\begin{array}{l}
\delta \square \square \square \square \square^{\square} \square \\
\delta z_{a}=\partial_{a} \lambda+\partial^{b} A_{a b}
\end{array}\right.
$$

- Hadge-dualise in $x=3$: $y^{a b b_{1}}=\varepsilon^{a b d} h d c+2 \delta_{c}^{[a} z^{b]}$,
where $\quad k \ldots \sim \cdot \cdot \cdot$ and $\delta k_{a b}=2 \partial_{(a} \epsilon_{b)}, \delta Z_{a}=\partial_{2} \lambda+\varepsilon a b c \partial^{b} \epsilon^{c}$
(A) In dim. $n=3$,

$$
S\left[h_{a b}, z_{a}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{2} \partial_{a} h_{b c} \partial^{b} h^{a c}+\frac{1}{2} \varepsilon^{b c d} \partial^{a} h_{a b} F_{c d}(z)+\frac{1}{4} F^{a b}(z) F_{a b}(z)\right]
$$

where $\quad F_{a b}(z):=2 \partial_{[a} Z_{b]} \quad$ and copy the gauge transformation laws:

$$
\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}, \delta Z_{a}=\partial_{a} \lambda+\varepsilon_{a b c} \partial^{b} \epsilon^{c}
$$

One can dualise Z_{a} vector field into a scalar σ in $n=3$, then define

$$
\begin{gather*}
\phi:=2 \sigma+\eta^{a b} h_{a b} \\
S\left[\phi, h_{a b}\right]=\int d^{3} x\left[\mathcal{L}^{F P}(\partial h)+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\partial_{a} \phi\left(\partial_{b} h^{a b}-\partial^{a} h\right)\right] \\
\text { Field equations } \Rightarrow T_{r}{ }^{2} K_{i 2,2]}(h)=0 \quad, \quad \phi=0 \quad \& \quad K_{a b}(h)=\partial_{a} \partial_{b} \phi
\end{gather*}
$$

\Rightarrow No doubling of physical d.o.f. !
(B) In dim. $n=4$, perform some change of field variables and dualize $Z_{a} \leftrightarrow \tilde{A}_{a}$

$$
S\left[T_{a b l c}, \tilde{A}_{a}\right]=\int d^{4} x\left[\mathscr{L}^{\text {curt. }}\left(T_{a b, c}\right)+\frac{1}{4} F^{a b}(\tilde{A}) F_{a b}(\tilde{A})-\frac{1}{\sqrt{2}} \tilde{A}^{a} K_{a}^{\prime \prime}(T)\right]
$$

where $\quad K^{a[3]}{ }_{b 23]}:=6 \partial^{[a} \partial_{b} T^{a a 3]}{ }_{b]}$ curvature, $K^{3 p}:=T_{r}{ }^{2} K$

The gauge invariances are the ones expected for a Curtright field and a vector.

- Field equations:

$$
\begin{array}{r}
-\partial_{a} F^{a b}(\tilde{A})+\frac{1}{\sqrt{2}} K^{" b b}=0 \\
K^{\prime a b 1} c+\delta_{c}^{c a} K^{m b]}-\frac{1}{\sqrt{2}} \partial_{c} F^{a b}-\frac{1}{\sqrt{2}} \delta_{c}^{[a} \partial_{d} F^{b] d}=0 \tag{2}
\end{array}
$$

Take the trace of (2), combine with (1) to get the EOMs and duality relation $d^{\dagger} F_{[2]}(\tilde{A})=0=\operatorname{Tr}_{r}^{2} K_{[3,2]}(T) \& \operatorname{Tr}_{[3,2]}(T)=\frac{1}{2} d_{2} F_{[2,0]}(\tilde{A}) \Rightarrow$ no doubling of do. f. !
2.2) Double dualisation of spin-2 in $n=5$.

The dualization procedure given in [N.B., P. Cask, D. Ponomorev 2012] for the double-dual graviton gives an action $S\left[D_{a b, c d}, z^{a b,}{ }_{c}\right]=\int d^{5} x \mathscr{L}(\partial D, \partial z)$
\square $z^{a b 1}{ }_{c}=-z^{b a 1}{ }_{c}$
where $\quad \mathscr{L}(\partial D, \partial z)=\mathscr{L}(\partial z)-\mathscr{L}(\partial D)+\mathcal{L}^{\text {cross }}$
features the complete $D_{a b, c d}$ field, including its traceless port

The action is gauge invariant under

$$
\left\{\begin{array}{l}
\delta a \square=\square a \\
\delta z^{m n]}=\lambda^{m n} a+2^{\left[m \xi^{n]}\right.} a-\frac{1}{2} \delta_{a}^{[m} \partial_{b} \xi^{n] b}+\delta_{a}^{[m} \partial^{n]} x
\end{array}\right.
$$

where $\lambda_{a b c}=\lambda_{\{a b c\}}$ and $\xi^{a i b} \sim \square \otimes \square$

Perform a change of variable

$$
y^{a b{ }_{c}}:=z_{c}^{a b 1}+\delta_{c}^{[a} z^{b]}
$$

to get

$$
\begin{aligned}
& S\left[Y^{a b b}{ }_{c}, D_{a b, c d}\right]=\int d^{s} x\left[\mathscr{L}^{\text {curt. }}\left(Y_{a b, c}\right)-\mathscr{L}(\partial D)\right. \\
& \left.+\frac{1}{2} \epsilon_{\text {abide }} \partial^{2} D^{c d,}{ }_{\text {mn }}\left(\widetilde{F}^{\text {admin }}(y)-\frac{1}{2} F^{\text {mmaib }}\right)\right]
\end{aligned}
$$

That propagates a single graviton.

Dealize $y_{c a b}$ in $n=5$ ($\varepsilon_{a b c d e} \partial^{d} f_{i n}^{e} F^{a b i l u}$) for $f_{a / c} \sim h_{a b}+B_{\text {mab] }}$ to get

$$
S\left[D_{a b, c d}, f_{a b}\right]=\int\left[\mathscr{L}^{F p}(k)-\mathscr{L}(\partial D)-\frac{3}{2} h_{a b} \tilde{K}^{a b}(D)\right]
$$

whore $\tilde{K}_{[2,2]}(D):=*_{1} *_{2} \underbrace{d_{1} d_{2} D_{[2,2]}}_{K_{[3,3]}} \cdot$ Field equations: $\quad \begin{aligned} & \operatorname{Tr} K_{[2,2]}(h)=0=\operatorname{Tr}^{2} K_{[3,3]}(D) \\ & \& \quad K_{[2,2]}(h) \propto \operatorname{Tr} K_{[3,3]}(D) .\end{aligned}$
(3) Higher (or enotic) dualisation of the 3D graviton and scalar
3.1) Higher dualisation of graviton in 3D $\square \mapsto \square \square$ more

Spin-r Fierz-Panli \square viewed as $h_{[0,1,1]}$ gange foeld

Qu-shell Turisted duality

$$
\begin{aligned}
& *_{3} K_{[2,2,1]}(h)=K_{a b i c d i u}(k) \varepsilon_{e f}^{u} \sim \frac{a|c| e}{b|d| f} \underset{\text { ed }}{ } \neq K_{a b i c d i e f}(\varphi):=8 \partial_{[a} \partial_{i c} \partial_{[e} \varphi_{f] d] b]} \\
& \longrightarrow \operatorname{Tr} K_{[2,2,1]}(k)=0=\operatorname{Tr} K_{[2,2,2]} \quad \text { (EI) }
\end{aligned}
$$

Since $n=3,(E I) \Leftrightarrow K_{[2,2,1]}(h)=0=K_{[2,2,2]}(\varphi)$ Topological

To make that story variationnal :

1. $\quad S_{F P}\left[h_{a b}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{2} \partial_{a} h \partial^{a} h-\partial_{a} h^{a b} \partial_{b} h+\partial_{a} h^{a b} \partial c h_{c b}\right]$
2. $S\left[G_{a \mid b c}, D_{a b} c^{c d}\right]=\int d^{3} x\left[-\frac{1}{2} G_{a \mid b c} G^{a / b c}+\frac{1}{2} G_{a \mid 0} \cdot G^{a 14} a-G_{01} \cdot b G_{b 1 a}+G_{01}{ }^{b} G^{a l}{ }_{a b}\right.$
where $G_{a \mid b c} \sim$ 回 \otimes bic,$D_{a d_{1}}{ }^{b c} \sim \frac{a}{d} \otimes$ bl
3. Solve for $G_{a, b c}$ auxiliary field

$$
\longleftrightarrow S\left[D_{a b}^{c d}\right]=\frac{1}{2} \int d^{3} x\left[\partial^{a} D_{a b i c d} \partial_{e} D^{e b i c d}-\partial^{a} D_{a b i c}{ }^{b} \partial_{d} D^{\text {dec }} e-\partial^{a} D_{a b i c}^{c} \partial_{e} D^{e b i d}{ }_{d}\right]
$$

4. Decompose $\tilde{\mathbb{D}} a \mid b c:=-\frac{1}{2} \varepsilon_{a m n} D^{m n 1} b c \sim a \otimes \square \underset{\text { so (3) }}{\longrightarrow}$ \square $\oplus 2 \times \square$
5. Dualise one vector into scalar - perform some field redefinitions to get ...

$$
\begin{align*}
S\left[\varphi_{a b c}, h_{a b}\right]=\frac{1}{2} \int d^{3} x[& -\partial_{a} \varphi_{b c d} \partial^{a} \varphi^{b c d}+\partial^{a} \varphi^{b} \partial^{c} \varphi_{a b c}+\partial_{a} \varphi^{a b c} \partial^{d} \varphi_{b c d} \\
& -\frac{1}{7} \partial_{a} \varphi_{b} \partial^{a} \varphi^{b}-\frac{31}{28} \partial_{a} \varphi^{a} \partial^{b} \varphi_{b} \\
& +\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{14} \partial_{a} h \partial^{a} h-\frac{3}{7} \partial^{a} h_{a b} \partial_{c} h^{b c}-\frac{1}{7} \partial^{a} h \partial_{c} h_{a}{ }^{c} \\
& \left.+\frac{10}{7} \varepsilon_{a p q} \partial^{b} h_{b}{ }^{a} \partial^{p} \varphi^{q}-2 \varepsilon_{a p q} \partial^{b} h^{a c} \partial^{p} \varphi^{q}{ }_{b c}\right] \tag{3.32}
\end{align*}
$$

that is invariant under

$$
\begin{align*}
\delta \varphi_{a b c} & =3 \partial_{(a} \widehat{\xi}_{b c)}-\frac{2}{3} \varepsilon_{(a}{ }^{p q} \eta_{b c)} \partial_{p} \epsilon_{q}, \tag{3.33}\\
\delta h_{a b} & =2 \partial_{(a} \epsilon_{b)}+2 \varepsilon_{p q(a} \partial^{p} \widehat{\xi}^{q}{ }_{b)} . \tag{3.34}
\end{align*}
$$

Recall that this is a topological theory.

From a general result [Grigoriev-Mkrtchyon-Skvertsov 2005], we know that
it can be put in Ckern-Simons form [To appear]
3.2) Doable exotic dualisation of vector in 3D: \square
start from the first exotic dualisation of Maxwell's theory in $n=3$

$$
S\left[h_{a b}, z_{a}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} k^{b c}+\frac{1}{2} \partial_{a} h_{b c} \partial^{b} h^{a c}+\frac{1}{2} \varepsilon^{b d} \partial^{a} h_{a b} F_{c d}(z)+\frac{1}{4} F^{a b}(z) F_{a b}(z)\right]
$$

where $\quad \delta k_{a b}=2 \partial_{(a} \epsilon_{b)}, \quad \delta Z_{a}=\partial_{a} \lambda+\varepsilon_{a b c} \partial^{b} \epsilon^{c}$
and dualise $k_{a b}$ ~ ab in empty column.
After some steps (parent action, daughter action, so (3) decomposition, field redef, dualisation, field redef.), one gets an action $S\left[\phi_{a b c}, h_{a b}, A_{a}\right]$ invariant under entangled gauge transformations:

$$
\begin{aligned}
\delta \phi_{a b c} & =3 \partial_{(a} \hat{\xi}_{b c)}-\frac{2}{3} \varepsilon_{(a}^{m n} \eta_{b c)} \partial_{m} \epsilon_{n} \\
\delta k_{a b} & \left.=2 \partial_{(a} \epsilon_{b)}+2 \varepsilon_{\text {mn ca }} \partial^{m} \hat{\xi}_{n}^{n}\right) \\
\delta A_{a} & =\partial_{a} \lambda+\varepsilon_{a b c} \partial^{b} \epsilon^{c}
\end{aligned}
$$

(4) Outlook

- In the topological case in 3D, pursuing the higher (exotic) dualisations to produce higher (undecomposable) spin fields, we expect an infinite spectrum of fields of rank $\in\{2,3,4, \cdots\}$.
\rightarrow It cannot match the well-known Blencowe model, since here we have an undecamposable structure at the level of gauge transformations.
- In the propagating case in 3D, pursuing the higher (exotic) dualisations to produce higher (undecomposable) spin fields, we expect an infinite spectrum of fields of rank $\in\{1,2,3, \ldots\}$.
- In the case of double exotic dual of a scalar field in $n=3$, the action

$$
S\left[h_{a b}, \sigma\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{k c}+\partial_{a} h^{a b} \partial^{c} k_{b c}+2 \partial_{a} \sigma\left(\partial^{a} \sigma+\partial_{b} h^{a b}\right)\right]
$$

is obtained in [2012.11356], invariant under

$$
\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}, \delta \sigma=-\partial^{a} \epsilon_{a} .
$$

\longrightarrow We now have found a direct relation with the spin-r triplet system as studied and discussed in
"Maxwell-like Lagrangian for heigher-spins", [A.Campolomi \& D. Francia, 1206.5877]

- In the higher-spin cases, other undecompsoable, finite-dimeusional representations ore expected.

