E_{11} exceptional field theory

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

Quarks 2020/Sakharov centennial, 3 June 2021

Joint work with Guillaume Bossard and Ergin Sezgin $[2103.13411]\left[\begin{array}{c}1907.02080 \\ \text { JHEP } 1910 \text { (2019) 165 }\end{array}\right]$
Also in addition with Jakob Palmkvist and Chris Pope

$$
\left[\begin{array}{c}
1703.01305 \\
\text { JHEP } 1705(2017) \\
020
\end{array}\right]
$$

Context

- Toroidal reduction of $D=11$ supergravity on $T^{n}\left[\begin{array}{c}\text { Cremmer } \\ \text { Julia }\end{array}\right]$ \Rightarrow max. SUGRA in $D=11-n$ dimensions with global E_{n}
- Symmetry acts on scalars non-linearly and p-forms linearly: E_{n} tensor hierarchy $\left[\begin{array}{c}\text { de Witit Nicolai } \\ \text { Samtiteben }\end{array}\right]$

Context

- Toroidal reduction of $D=11$ supergravity on $T^{n}\left[\begin{array}{c}\text { Cremmer } \\ \text { Julia }\end{array}\right]$ \Rightarrow max. SUGRA in $D=11-n$ dimensions with global E_{n}
- Symmetry acts on scalars non-linearly and p-forms linearly: E_{n} tensor hierarchy $\left[\begin{array}{c}\text { de witit Nicolai } \\ \text { samteben }\end{array}\right]$
- Part of global E_{n} stems from local symmetries in $D=11$

$$
\begin{aligned}
M_{11} & =M_{11-n} \times T^{n} \quad \text { coordinates } \quad\left(x^{\mu}, y^{m}\right) \\
\delta_{\xi} g_{m n}(x, y) & =L_{\xi} g_{m n}=\xi^{p} \partial_{p} g_{m n}+\partial_{m} \xi^{p} g_{p n}+\partial_{n} \xi^{p} g_{m p}
\end{aligned}
$$

for ξ^{p} along T^{n}.

Context

- Toroidal reduction of $D=11$ supergravity on $T^{n}\left[\begin{array}{c}\text { Cremmer } \\ \text { Julia }\end{array}\right]$ \Rightarrow max. SUGRA in $D=11-n$ dimensions with global E_{n}
- Symmetry acts on scalars non-linearly and p-forms linearly: E_{n} tensor hierarchy $\left[\begin{array}{c}\text { de witit Nicolai } \\ \text { samtiteben }\end{array}\right]$
- Part of global E_{n} stems from local symmetries in $D=11$

$$
\begin{aligned}
& M_{11}=M_{11-n} \times T^{n} \quad \text { coordinates }\left(x^{\mu}, y^{m}\right) \\
& \delta_{\xi} g_{m n}\left(x, \mathcal{X}^{\prime}\right)=L_{\xi} g_{m n}=\xi^{p} \partial_{p} g_{m n}+\partial_{m} \xi^{p} g_{p n}+\partial_{n} \xi^{p} g_{m p}
\end{aligned}
$$ for ξ^{p} along T^{n}. Take $\xi^{p}=\Lambda^{p}{ }_{n} y^{n}$ with $\underline{\text { cst. }} \Lambda^{p}{ }_{n} \in G L(n)$

Context

- Toroidal reduction of $D=11$ supergravity on $T^{n}\left[\begin{array}{c}\text { Cremmer } \\ \text { Julia }\end{array}\right]$ \Rightarrow max. SUGRA in $D=11-n$ dimensions with global E_{n}
- Symmetry acts on scalars non-linearly and p-forms linearly: E_{n} tensor hierarchy $\left[\begin{array}{c}\text { de witit Nicolai } \\ \text { samtiteben }\end{array}\right]$
- Part of global E_{n} stems from local symmetries in $D=11$

$$
T^{n} \text { red. }
$$ for ξ^{p} along T^{n}. Take $\xi^{p}=\Lambda^{p}{ }_{n} y^{n}$ with cst. $\Lambda^{p}{ }_{n} \in G L(n)$

Context

- Toroidal reduction of $D=11$ supergravity on $T^{n}\left[\begin{array}{c}\text { Cremmer } \\ \text { julia }\end{array}\right]$ \Rightarrow max. SUGRA in $D=11-n$ dimensions with global E_{n}
- Symmetry acts on scalars non-linearly and p-forms linearly: E_{n} tensor hierarchy $\left[\begin{array}{c}\text { de witit Nicolaia } \\ \text { samtieben }\end{array}\right]$
- Part of global E_{n} stems from local symmetries in $D=11$

$$
\begin{aligned}
& M_{11}=M_{11-n} \times T^{n} \quad \text { coordinates } \quad\left(x^{\mu}, y^{m}\right) \\
& \delta_{\xi} g_{m n}(x, \text { 次 })=L_{\xi} g_{m n}=\xi^{p} \partial{\text { scalar on } M_{11-n}}_{\text {minn }}^{\text {global }}+\underbrace{\partial_{m} \xi^{p} g_{p n}+\partial_{n} \xi^{p} g_{m p}}_{G L(n) \subset E_{n} \text { action with } \partial_{0} \xi^{*}}
\end{aligned}
$$ for ξ^{p} along T^{n}. Take $\xi^{p}=\Lambda^{p}{ }_{n} y^{n}$ with cst. $\Lambda^{p}{ }_{n} \in G L(n)$

More of E_{n} from local matter gauge trm. in $D=11$

- But \exists also truly hidden E_{n} transformations. Require specific Chern-Simons term. Important for U-duality...

Context

Is there a similar origin for all of E_{n} ? [Julia] [west] [amourthenneaux]

Context

Is there a similar origin for all of E_{n} ? [Julia] [West] [DamourtHenneaux]
One affirmative answer to this is provided by exceptional

Context

Is there a similar origin for all of E_{n} ? [Julia] [west] [Damourthenneaux]
One affirmative answer to this is provided by exceptional

Scalar fields $\mathcal{M}=\mathcal{V}^{\dagger} \mathcal{V}$ with $\mathcal{V} \in E_{n} / K\left(E_{n}\right)$. 'Ancestor symmetry'?

$$
\begin{aligned}
& \text { generalised Lie derivative } \\
& \delta_{\xi} \mathcal{M}(x, y)=\mathcal{L}_{\xi} \mathcal{M}=\xi^{P} \partial_{P} \mathcal{M}+E_{n} \text {-action with } \partial_{\bullet} \xi^{\bullet}
\end{aligned}
$$

Reduces ok on T^{n}. But...

Context

Is there a similar origin for all of E_{n} ? [Julia] [west] [Damourt Henneaux]
One affirmative answer to this is provided by exceptional

Scalar fields $\mathcal{M}=\mathcal{V}^{\dagger} \mathcal{V}$ with $\mathcal{V} \in E_{n} / K\left(E_{n}\right)$. 'Ancestor symmetry'?
generalised Lie derivative

$$
\delta_{\xi} \mathcal{M}(x, y)=\mathcal{L}_{\xi} \mathcal{M}=\xi^{P} \partial_{P} \mathcal{M}+E_{n} \text {-action with } \partial_{\bullet} \xi^{\bullet}
$$

Reduces ok on T^{n}. But...
For \mathfrak{e}_{n}-valued parameter $\partial_{\bullet} \xi^{\bullet}$
need to extend space since
E_{n} cannot act on torus y^{m} !
Replace $y^{m} \rightarrow Y^{M} \in R_{1}$
Also: [[uffit [West] [Hul]

Context

Is there a similar origin for all of E_{n} ? [Julia] [west] [DamourtHenneaux]
One affirmative answer to this is provided by exceptional

Scalar fields $\mathcal{M}=\mathcal{V}^{\dagger} \mathcal{V}$ with $\mathcal{V} \in E_{n} / K\left(E_{n}\right)$. 'Ancestor symmetry'?
generalised Lie derivative

$$
\delta_{\xi} \mathcal{M}(x, y)=\mathcal{L}_{\xi} \mathcal{M}=\xi^{P} \partial_{P} \mathcal{M}+E_{n} \text {-action with } \partial_{\bullet} \xi^{\bullet}
$$

Reduces ok on T^{n}. But... For \mathfrak{e}_{n}-valued parameter $\partial_{\bullet} \xi^{\bullet}$ need to extend space since E_{n} cannot act on torus y^{m} ! Replace $y^{m} \rightarrow Y^{M} \in R_{1}$

	R_{1}	R_{2}
E_{6}	$\mathbf{2 7}$	$\overline{\mathbf{2 7}}$
E_{7}	56	$\mathbf{1 3 3} \oplus \mathbf{1}$
E_{8}	$\mathbf{2 4 8}$	$\mathbf{3 8 7 5} \oplus \mathbf{2 4 8} \oplus \mathbf{1}$

Also: [Duff] [west [Hul]

Exceptional field theory (ExFT)

Important point: Gauge transformations $\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$)

$$
\left.\partial_{P} \otimes \partial_{Q}\right|_{R_{2}}=0
$$

$\left[\begin{array}{c}\text { Coimbra, Waldram } \\ \text { Strickland-Constable }\end{array}\right]\left[\begin{array}{c}\text { Berman } \\ \text { Perry }\end{array}\right]$
[Berman, Cederwali] AK, Thompson

Exceptional field theory (ExFT)

Important point: Gauge transformations $\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$)
E_{n} invariant $\sqrt{ }$
Any solution (e.g. keeping

$$
\left.\partial_{P} \otimes \partial_{Q}\right|_{R_{2}}=0
$$

$\left[\begin{array}{c}\text { Coimbra, Waldram } \\ \text { Strickland-Constable }\end{array}\right]\left[\begin{array}{c}\text { Berman } \\ \text { Perry }\end{array}\right]$
[Berman, Cederwali] AK, Thompson

Exceptional field theory (ExFT)

Important point: Gauge transformations $\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$) E_{n} invariant $\sqrt{ }$
Any solution (e.g. keeping $\left.\quad \partial_{P} \otimes \partial_{Q}\right|_{R_{2}}=0$ only y^{m}) breaks E_{n} !
$\left[\begin{array}{c}\text { Coimbra, Waldram } \\ \text { Strickland-Constable }\end{array}\right]\left[\begin{array}{c}\text { Berman } \\ \text { Perry }\end{array}\right]$
$\left[\begin{array}{c}\text { Berman, Cederwali } \\ \text { AK, Thompson }\end{array}\right]$

Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M}, generalising gravity?

Exceptional field theory (ExFT)

Important point: Gauge transformations $\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$) E_{n} invariant \checkmark
Any solution (e.g. keeping $\left.\quad \partial_{P} \otimes \partial_{Q}\right|_{R_{2}}=0$ only y^{m}) breaks E_{n} !
$\left[\begin{array}{c}\text { Coimbra, Waldram } \\ \text { Strickland-Constable }\end{array}\right]\left[\begin{array}{c}\text { Berman } \\ \text { Perry }\end{array}\right]$
[Berman, Cederwall
AK, Thompson

Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M}, generalising gravity?
Include other fields ($g_{\mu \nu}, A_{\mu}^{M}, \ldots$) from E_{n} tensor hierarchy and x^{μ} diffeos to obtain E_{n} ExFT
$\left[\begin{array}{c}\text { Hohm } \\ \text { Samtleben }\end{array}\right] \quad(n \leq 8)$

Exceptional field theory (ExFT)

Important point: Gauge transformations $\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$) E_{n} invariant \checkmark Any solution (e.g. keeping $\left.\quad \partial_{P} \otimes \partial_{Q}\right|_{R_{2}}=0$ only y^{m}) breaks E_{n} !
Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M}, generalising gravity?
Include other fields ($g_{\mu \nu}, A_{\mu}^{M}, \ldots$) from E_{n} tensor hierarchy and x^{μ} diffeos to obtain E_{n} ExFT $\quad\left[\begin{array}{c}\text { Hohm } \\ \text { Samteben] }\end{array}(n \leq 8)\right.$

- Uniquely fixed by symmetries. Contains $D=11$ and IIB
- For $n=8$ need ancillary gauge parameter for closure of gen. diffeo. Related to extra constrained fields
- For $n=9$ these constrained fields are intertwined indecomposably with tensor hierarchy fields

E_{11} exceptional field theory

Our work: Construct ExFT for E_{11}
pro: no separation external/internal space contra: hard due to Kac-Moody and constrained fields

E_{11} exceptional field theory

Our work: Construct ExFT for E_{11}
pro: no separation external/internal space contra: hard due to Kac-Moody and constrained fields

- Draws from ideas from [west] that predate all ExFT
- Properties of the tensor hierarchy algebra [Palmkvis]
- Ideas for constrained fields in E_{9} ExFT $\left.\begin{array}{c}\text { Bossard, Ciceri } \\ \text { Invers, } A K, \text {, Samtleben }\end{array}\right]$

E_{11} exceptional field theory

Our work: Construct ExFT for E_{11}
pro: no separation external/internal space
contra: hard due to Kac-Moody and constrained fields

- Draws from ideas from [west] that predate all ExFT
- Properties of the tensor hierarchy algebra [Palmkvis]
- Ideas for constrained fields in E_{9} ExFT $\begin{gathered}\text { [inverso, AK, Sk, Samteriben }]\end{gathered}$

Results

- Pseudo-Lagrangian and (twisted) duality equation, invariant under E_{11} generalised diffeomorphisms
- Reduces to non-linear $D=11$ SUGRA and ExFT
[Need many new E_{11} identities. Most proved, some only partially]

Some facts about E_{11}

∞-dim'I Kac-Moody algebra Complete list of generators/
 structure constants unknown
Write abstractly: $\quad\left[t^{\alpha}, t^{\beta}\right]=f^{\alpha \beta}{ }_{\gamma} t^{\gamma} \quad$ Killing form: $\quad \kappa^{\alpha \beta}$

Some facts about E_{11}

∞-dim'I Kac-Moody algebra Complete list of generators/
 structure constants unknown
Write abstractly: $\quad\left[t^{\alpha}, t^{\beta}\right]=f^{\alpha \beta}{ }_{\gamma} t^{\gamma} \quad$ Killing form: $\quad \kappa^{\alpha \beta}$
Possible to define highest weight representations $R(\underset{\uparrow}{\Lambda})[\mathrm{kac}]$ Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_{i}

Some facts about E_{11}

∞-dim'I Kac-Moody algebra Complete list of generators/
 structure constants unknown
Write abstractly: $\quad\left[t^{\alpha}, t^{\beta}\right]=f^{\alpha \beta}{ }_{\gamma} t^{\gamma} \quad$ Killing form: $\quad \kappa^{\alpha \beta}$
Possible to define highest weight representations $R(\underset{\uparrow}{\Lambda})[\mathrm{kac}]$ Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_{i} Useful to consider graded decompositions [west] $\left.\begin{array}{c}\text { Fischbacher] } \\ \text { Nicolai }\end{array}\right]$
adjoint $\mathfrak{e}_{11}: \ldots, F_{n_{1} n_{2} n_{3}}, K^{m}{ }_{n}, E^{n_{1} n_{2} n_{3}}, E^{n_{1} \ldots n_{6}}, E^{n_{1} \ldots n_{8}, n_{9}}, \ldots$

$$
R\left(\Lambda_{1}\right): \quad \ldots, P_{n_{1} \ldots n_{5}}, P_{n_{1} n_{2}}, P^{m}
$$

Some facts about E_{11}

∞-dim'I Kac-Moody algebra Complete list of generators/
 structure constants unknown
Write abstractly: $\quad\left[t^{\alpha}, t^{\beta}\right]=f^{\alpha \beta}{ }_{\gamma} t^{\gamma} \quad$ Killing form: $\quad \kappa^{\alpha \beta}$
Possible to define highest weight representations $R(\underset{\uparrow}{\Lambda})[\mathrm{kac}]$ Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_{i} Useful to consider graded decompositions [west] $\left.\begin{array}{l}\text { Fischbacher } \\ \text { Nicoolia }\end{array}\right]$ $m, n=0,1, \ldots, 10$

$$
\ell=-1 \quad \ell=0 \quad \ell=1 \quad \ell=2 \quad \ell=3
$$

adjoint $\mathfrak{e}_{11}: \ldots, F_{n_{1} n_{2} n_{3}}, K^{m}{ }_{n}, E^{n_{1} n_{2} n_{3}}, E^{n_{1} \ldots n_{6}}, E^{n_{1} \ldots n_{8}, n_{9}}, \ldots$

$$
R\left(\Lambda_{1}\right): \quad \ldots, P_{n_{1} \ldots n_{5}}, P_{n_{1} n_{2}}, P^{m}
$$

Some facts about E_{11}

∞-dim'I Kac-Moody algebra Complete list of generators/
 structure constants unknown
Write abstractly: $\quad\left[t^{\alpha}, t^{\beta}\right]=f^{\alpha \beta}{ }_{\gamma} t^{\gamma} \quad$ Killing form: $\quad \kappa^{\alpha \beta}$
Possible to define highest weight representations $R(\underset{\uparrow}{\Lambda})[\mathrm{kac}]$ Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_{i} Useful to consider graded decompositions [west] [Fischbacher] $m, n=0,1, \ldots, 10$

$$
\begin{array}{rll}
R\left(\Lambda_{1}\right): \quad \ldots, P_{n_{1} \ldots n_{5}}, P_{n_{1} n_{2}}, P^{m} \longleftarrow \quad D=11 \text { coords } \\
\ell=-\frac{7}{2} \quad \ell=-\frac{5}{2} \quad \ell=-\frac{3}{2} \quad \text { (other: 'brane coords') }
\end{array}
$$

Ingredients of F ExFT temp. involution Ingredients of E_{11} ExFT $\min _{R\left(\Lambda_{1}\right)}$

Following [west take the coordinates z^{M} of the extended space in E_{11} rep. $R_{1}=R\left(\Lambda_{1}\right)$. Generalised metric $\mathcal{M}=\mathcal{V}^{\dagger} \eta \mathcal{V}$

$$
\mathcal{M}(z) \rightarrow g^{\dagger} \mathcal{M}\left(g^{-1} z\right) g \quad \begin{gathered}
\text { 'non-linear realisation } \\
\text { of } E_{11} \ltimes \ell_{1}
\end{gathered}
$$

under rigid E_{11}.

Ingredients of $F \mathbf{E x F T}$ temp. involution Ingredients of E_{11} ExFT $\exists_{\exists \text { in } R\left(\Lambda_{1}\right)}$

Following [west take the coordinates z^{M} of the extended space in E_{11} rep. $R_{1}=R\left(\Lambda_{1}\right)$. Generalised metric $\mathcal{M}=\mathcal{V}^{\dagger} \eta \mathcal{V}$

$$
\begin{array}{lc}
\mathcal{M}(z) \rightarrow g^{\dagger} \mathcal{M}\left(g^{-1} z\right) g & \begin{array}{c}
\text { 'non-linear realisation } \\
\text { of } E_{11} \ltimes \ell_{1}^{\prime}
\end{array}
\end{array}
$$

under rigid E_{11}. From this construct the current/CM form

$$
J_{M \alpha} t^{\alpha}=\mathcal{M}^{-1} \partial_{M} \mathcal{M} \quad \in \overline{R\left(\Lambda_{1}\right)} \otimes \mathfrak{e}_{11}
$$

Ingredients of $F \mathbf{E x F T}$ temp. involution Ingredients of E_{11} ExFT $\exists_{\exists \text { in } R\left(\Lambda_{1}\right)}$

Following [west take the coordinates z^{M} of the extended space in E_{11} rep. $R_{1}=R\left(\Lambda_{1}\right)$. Generalised metric $\mathcal{M}=\mathcal{V}^{\dagger}{ }_{\eta}{ }^{\dagger} \mathcal{V}$

$$
\begin{array}{cc}
\mathcal{M}(z) \rightarrow g^{\dagger} \mathcal{M}\left(g^{-1} z\right) g \quad \text { 'non-linear realisation } \\
\text { of } E_{11} \ltimes \ell_{1} '
\end{array}
$$

under rigid E_{11}. From this construct the current/CM form

$$
J_{M \alpha} t^{\alpha}=\mathcal{M}^{-1} \partial_{M} \mathcal{M} \quad \in \overline{R\left(\Lambda_{1}\right)} \otimes \mathfrak{e}_{11}
$$

Useful to write \mathfrak{e}_{11} in $R\left(\Lambda_{1}\right)$ representation:

$$
t^{\alpha} \mapsto T^{\alpha M}{ }_{N}, \quad \mathcal{M} \mapsto \mathcal{M}_{M N}, \quad \mathcal{M}^{P S} \partial_{M} \mathcal{M}_{S Q}=J_{M \alpha} T^{\alpha P}{ }_{Q}
$$

Section constraint

$$
T^{\alpha P}{ }_{M} T_{\alpha}{ }_{N}{ }_{N} \partial_{P} \otimes \partial_{Q}=-\frac{1}{2} \partial_{M} \otimes \partial_{N}+\partial_{N} \otimes \partial_{M}
$$

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Current J_{M} is non-covariant ('connection' $\mathcal{M}^{-1} \partial_{M} \mathcal{M}$)

$$
\delta_{\xi} J_{M}=\mathcal{L}_{\xi} J_{M}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) t_{\alpha}
$$

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Current J_{M} is non-covariant ('connection' $\mathcal{M}^{-1} \partial_{M} \mathcal{M}$)

$$
\delta_{\xi} J_{M}=\mathcal{L}_{\xi} J_{M}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) t_{\alpha}
$$

Question: How to construct gauge-invariant dynamics?

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Current J_{M} is non-covariant ('connection' $\mathcal{M}^{-1} \partial_{M} \mathcal{M}$)

$$
\delta_{\xi} J_{M}=\mathcal{L}_{\xi} J_{M}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) t_{\alpha}
$$

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Current J_{M} is non-covariant ('connection' $\mathcal{M}^{-1} \partial_{M} \mathcal{M}$)

$$
\delta_{\xi} J_{M}=\mathcal{L}_{\xi} J_{M}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) t_{\alpha}
$$

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...
[west] : first-order gauge-variant equations ('modulo equations'). Derivatives can remove gauge-dependence

Ingredients of E_{11} ExFT

Generalised Lie derivative has parameter $\xi^{M} \in R\left(\Lambda_{1}\right)$, e.g.

$$
\delta_{\xi} \mathcal{M}=\mathcal{L}_{\xi} \mathcal{M}=\xi^{M} \partial_{M} \mathcal{M}+\kappa_{\alpha \beta} T^{\alpha M}{ }_{N} \partial_{M} \xi^{N}\left(\mathcal{M} t^{\beta}+t^{\beta \dagger} \mathcal{M}\right)
$$

Current J_{M} is non-covariant ('connection' $\mathcal{M}^{-1} \partial_{M} \mathcal{M}$)

$$
\delta_{\xi} J_{M}=\mathcal{L}_{\xi} J_{M}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) t_{\alpha}
$$

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...
[west] : first-order gauge-variant equations ('modulo equations'). Derivatives can remove gauge-dependence Instead: Use ExFT methods and extra fields for gauge-invariance

Tensor hierarchy extension

For any \mathfrak{e}_{n} tensor hierarchy algebra $\mathcal{T}\left(\mathfrak{e}_{n}\right)$ encodes ExFT fields. Graded Lie superalgebra [Palmkvis]

$$
\mathcal{T}\left(\mathfrak{e}_{n}\right)=\bigoplus_{\mathcal{T}} \mathcal{T}_{p}\left(\mathfrak{e}_{n}\right) \quad\left[\mathcal{T}_{p} \cong \mathcal{T}_{9-n-p}^{*}\right]
$$

$\mathcal{T}_{p}\left(\mathfrak{e}_{n}\right)$ contains the p-forms; \mathbb{Z}_{2}-even/odd depending on p

Tensor hierarchy extension

For any \mathfrak{e}_{n} tensor hierarchy algebra $\mathcal{T}\left(\mathfrak{e}_{n}\right)$ encodes ExFT fields. Graded Lie superalgebra [Palmkvist]

$$
\mathcal{T}\left(\mathfrak{e}_{n}\right)=\bigoplus_{p \in \mathbb{Z}} \mathcal{T}_{p}\left(\mathfrak{e}_{n}\right) \quad\left[\mathcal{T}_{p} \cong \mathcal{T}_{9-n-p}^{*}\right]
$$

$\mathcal{T}_{p}\left(\mathfrak{e}_{n}\right)$ contains the p-forms; \mathbb{Z}_{2}-even/odd depending on p
For \mathfrak{e}_{11} : existence of $\mathcal{T} \equiv \mathcal{T}\left(\mathfrak{e}_{11}\right)$ proved in [7703.01305], structure

$$
\mathcal{T}_{0}=[\underbrace{\left[\mathfrak{c}_{11} \oplus\left(R\left(\Lambda_{2}\right) \oplus \ldots\right)\right.}_{\text {adj }} \oplus[\underbrace{R\left(\Lambda_{10}\right) \oplus \ldots}_{D_{0}}]
$$

Tensor hierarchy extension

For any \mathfrak{e}_{n} tensor hierarchy algebra $\mathcal{T}\left(\mathfrak{e}_{n}\right)$ encodes ExFT fields. Graded Lie superalgebra [palmkist]

$$
\mathcal{T}\left(\mathfrak{e}_{n}\right)=\bigoplus_{p \in \mathbb{Z}} \mathcal{T}_{p}\left(\mathfrak{e}_{n}\right) \quad\left[\mathcal{T}_{p} \cong \mathcal{T}_{9-n-p}^{*}\right]
$$

$\mathcal{T}_{p}\left(\mathfrak{e}_{n}\right)$ contains the p-forms; \mathbb{Z}_{2}-even/odd depending on p
For \mathfrak{e}_{11} : existence of $\mathcal{T} \equiv \mathcal{T}\left(\mathfrak{e}_{11}\right)$ proved in [1703.01305], structure

$$
\mathcal{T}_{0}=[\underbrace{\left[\mathfrak{c}_{11} \oplus\left(R\left(\Lambda_{2}\right) \oplus \ldots\right)\right.}_{\text {adj }} \oplus[\underbrace{R\left(\Lambda_{10}\right) \oplus \ldots}_{D_{0}}]
$$

indecomposable sum
of \mathfrak{e}_{11} representations

Tensor hierarchy extension

For any \mathfrak{e}_{n} tensor hierarchy algebra $\mathcal{T}\left(\mathfrak{e}_{n}\right)$ encodes ExFT fields. Graded Lie superalgebra [palmkist]

$$
\mathcal{T}\left(\mathfrak{e}_{n}\right)=\bigoplus_{p \in \mathbb{Z}} \mathcal{T}_{p}\left(\mathfrak{e}_{n}\right) \quad\left[\mathcal{T}_{p} \cong \mathcal{T}_{9-n-p}^{*}\right]
$$

$\mathcal{T}_{p}\left(\mathfrak{e}_{n}\right)$ contains the p-forms; \mathbb{Z}_{2}-even/odd depending on p
For \mathfrak{e}_{11} : existence of $\mathcal{T} \equiv \mathcal{T}\left(\mathfrak{e}_{11}\right)$ proved in [1703.01305], structure

$$
\mathcal{T}_{0}=[\underbrace{\left[\mathfrak{c}_{11} \oplus\left(R\left(\Lambda_{2}\right) \oplus \ldots\right)\right.}_{\text {adj }} \oplus[\underbrace{R\left(\Lambda_{10}\right) \oplus \ldots}_{D_{0}}]
$$

indecomposable sum of \mathfrak{e}_{11} representations write as $t^{\widehat{\alpha}}=\left(t^{\alpha}, t^{\tilde{\alpha}}\right) \quad\left[t^{\alpha}, t^{\tilde{q}}\right]=-T^{\alpha \tilde{\alpha}}{ }_{\bar{\beta}} t^{\tilde{\beta}}-K^{\alpha \tilde{\alpha}}{ }_{\beta} t^{\beta}$ $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$

Tensor hierarchy extension

For any \mathfrak{e}_{n} tensor hierarchy algebra $\mathcal{T}\left(\mathfrak{e}_{n}\right)$ encodes ExFT fields. Graded Lie superalgebra [palmkist]

$$
\mathcal{T}\left(\mathfrak{e}_{n}\right)=\bigoplus_{\mathcal{T}} \mathcal{T}_{p}\left(\mathfrak{e}_{n}\right) \quad\left[\mathcal{T}_{p} \cong \mathcal{T}_{9-n-p}^{*}\right]
$$

$\mathcal{T}_{p}\left(\mathfrak{e}_{n}\right)$ contains the p-forms; \mathbb{Z}_{2}-even/odd depending on p
For \mathfrak{e}_{11} : existence of $\mathcal{T} \equiv \mathcal{T}\left(\mathfrak{e}_{11}\right)$ proved in [1703.01305], structure

$$
\mathcal{T}_{0}=[\underbrace{\left[\mathfrak{c}_{11} \oplus\left(R\left(\Lambda_{2}\right) \oplus \ldots\right)\right.}_{\text {adj }} \oplus[\underbrace{R\left(\Lambda_{10}\right) \oplus \ldots}_{D_{0}}]
$$

indecomposable sum of \mathfrak{e}_{11} representations write as $t^{\widehat{\alpha}}=\left(t^{\alpha}, t^{\tilde{\alpha}}\right) \quad\left[t^{\alpha}, t^{\tilde{a}}\right]=-T^{\alpha \tilde{\alpha}}{ }_{\bar{\beta}}+\frac{\bar{\beta}}{}-K^{\alpha \tilde{\alpha}_{\beta}} t^{\beta}$ something entangled with E_{11} !

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P^{M}}{R\left(\Lambda_{1}\right) \oplus \ldots}
$$

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P^{M}}{R\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11}.

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P^{M}}{R\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11}.
For any \mathfrak{e}_{n} it is the flux/embedding tensor representation.
Write its generators t_{I}. Has non-deg. symplectic form $\Omega_{I J}$.

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P^{M}}{R\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11}.
For any \mathfrak{e}_{n} it is the flux/embedding tensor representation. Write its generators t_{I}. Has non-deg. symplectic form $\Omega_{I J}$. We also assume non-deg. $K\left(E_{11}\right)$-inv. bilinear form $\eta_{I J}(\checkmark$ at low levels). Relation $\Omega_{I J} \eta^{J K} \Omega_{K L}=\eta_{I L}$

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P}{R}_{R}^{\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{k}_{11}.
For any \mathfrak{e}_{n} it is the flux/embedding tensor representation.
Write its generators t_{I}. Has non-deg. symplectic form $\Omega_{I J}$.
We also assume non-deg. $K\left(E_{11}\right)$-inv. bilinear form $\eta_{I J}(\checkmark$ at low levels). Relation $\Omega_{I J} \eta^{J K} \Omega_{K L}=\eta_{I L}$
In $G L(11)$ decomposition

$$
t_{I} \in \mathcal{T}_{-1}: \quad \ldots, K^{n_{1} n_{2}}{ }_{m}, K^{n_{1} n_{2} n_{3} n_{4}}, K^{n_{1} \ldots n_{7}}, K^{n_{1} \ldots n_{9} ; m}, \ldots
$$

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P}{R}_{R}^{\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{k}_{11}.
For any \mathfrak{e}_{n} it is the flux/embedding tensor representation. Write its generators t_{I}. Has non-deg. symplectic form $\Omega_{I J}$. We also assume non-deg. $K\left(E_{11}\right)$-inv. bilinear form $\eta_{I J}(\checkmark$ at low levels). Relation $\Omega_{I J} \eta^{J K} \Omega_{K L}=\eta_{I L}$
In $G L(11)$ decomposition $\quad \Omega_{I J}$

$$
t_{I} \in \mathcal{T}_{-1}: \quad \ldots, K^{n_{1} n_{2}}, \stackrel{\sqrt{n_{1} n_{2} n_{3} n_{4}}, K^{n_{1} \ldots n_{7}}, K^{n_{1} \ldots n_{9} ; m}}{ }
$$

Tensor hierarchy extension

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$
\mathcal{T}_{1}=\stackrel{P^{M}}{R\left(\Lambda_{1}\right) \oplus \ldots}
$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{k}_{11}.
For any \mathfrak{e}_{n} it is the flux/embedding tensor representation. Write its generators t_{I}. Has non-deg. symplectic form $\Omega_{I J}$. We also assume non-deg. $K\left(E_{11}\right)$-inv. bilinear form $\eta_{I J}(\checkmark$ at low levels). Relation $\Omega_{I J} \eta^{J K} \Omega_{K L}=\eta_{I L}$
In $G L(11)$ decomposition $\quad \Omega_{I J}$

$$
t_{I} \in \mathcal{T}_{-1}: \quad \ldots, K^{n_{1} n_{2}}, \stackrel{\sqrt{K_{1} n_{2} n_{3} n_{4}}, \stackrel{1}{K}^{n_{1} \ldots n_{7}}, K^{n_{1} \ldots n_{9} ; m}, \ldots}{ }
$$

\Rightarrow candidate $\underline{E_{11} \text {-covariant duality equation } \quad \mathcal{M}_{I J}=\left(\mathcal{V}^{\dagger} \eta \mathcal{V}\right)_{I J}, ~}$

$$
\mathcal{M}_{I J} F^{J}=\Omega_{I J} F^{J} \quad \text { but what is } F^{I} ? ?
$$

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α Level $\mathcal{T}_{-2}=\widehat{\mathrm{adj}}^{*} \oplus D_{0}^{*}$ is the dual of \mathcal{T}_{0} and so includes generators $\bar{t}_{\widehat{\alpha}}$

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α
Level $\mathcal{T}_{-2}=\widehat{\operatorname{adj}}^{*} \oplus D_{0}^{*}$ is the dual of \mathcal{T}_{0} and so includes generators $\bar{t}_{\widehat{\alpha}}$
not E_{11} tensor!
Get some E_{11}-invariant tensors from \mathcal{T}, e.g. $/ \quad$ Indecomposable

$$
\left[P^{M}, \bar{t}_{\widehat{\alpha}}\right]=C^{I M_{\widehat{\alpha}} t_{I}}, \quad C^{I M_{\widehat{\alpha}}}=\left(C^{I M}{ }_{\alpha}, C^{I M_{\tilde{\alpha}}}\right)
$$

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α
Level $\mathcal{T}_{-2}=\widehat{\operatorname{adj}}^{*} \oplus D_{0}^{*}$ is the dual of \mathcal{T}_{0} and so includes generators $\bar{t}_{\widehat{\alpha}}$
not E_{11} tensor!
Get some E_{11}-invariant tensors from \mathcal{T}, e.g./ Indecomposable

$$
\left[P^{M}, \bar{t}_{\widehat{\alpha}}\right]=C^{I M_{\widehat{\alpha}} t_{I}}, \quad C^{I M_{\widehat{\alpha}}}=\left(C^{I M_{\alpha}}{ }_{\alpha}, C^{I M_{\tilde{\alpha}}}\right)
$$

Define
new constrained fields

$$
F^{I}=C^{I M}{ }_{\alpha} J_{M}{ }^{\alpha}+C^{I M}{ }_{\tilde{\alpha}}^{\downarrow}{ }_{\chi_{M}}^{\tilde{\alpha}}
$$

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α
Level $\mathcal{T}_{-2}=\widehat{\mathrm{adj}}^{*} \oplus D_{0}^{*}$ is the dual of \mathcal{T}_{0} and so includes generators $\bar{t}_{\widehat{\alpha}}$
not E_{11} tensor!
Get some E_{11}-invariant tensors from \mathcal{T}, e.g. \quad Indecomposable

$$
\left[P^{M}, \bar{t}_{\widehat{\alpha}}\right]=C^{I M_{\widehat{\alpha}} t_{I}}, \quad C^{I M_{\widehat{\alpha}}}=\left(C^{I M}{ }_{\alpha}, C^{I M_{\tilde{\alpha}}}\right)
$$

Define new constrained fields

$$
F^{I}=C^{I M}{ }_{\alpha} J_{M}{ }^{\alpha}+C^{I M_{\tilde{\alpha}}{ }^{\downarrow} M^{\tilde{\alpha}}+C^{I M}} \stackrel{\widehat{\Lambda} \zeta_{M}}{\hat{\Lambda}}
$$

For gauge-invariance of duality equation need more fields index

$$
R\left(\Lambda_{1}\right) \otimes R\left(\Lambda_{1}\right)=R\left(2 \Lambda_{1}\right) \oplus R\left(\tilde{\alpha}_{2}\right) \oplus \stackrel{\hat{\Lambda}}{R_{\text {section }}}
$$

E_{11} field strengths

Would like F^{I} to contain the \mathfrak{e}_{11} current components $J_{M}{ }^{\alpha}=\kappa^{\alpha \beta} J_{M \beta} \quad \longrightarrow$ need some tensor with indices I, M, α
Level $\mathcal{T}_{-2}=\widehat{\mathrm{adj}}^{*} \oplus D_{0}^{*}$ is the dual of \mathcal{T}_{0} and so includes generators $\bar{t}_{\widehat{\alpha}}$
not E_{11} tensor!
Get some E_{11}-invariant tensors from \mathcal{T}, e.g. \quad Indecomposable

$$
\left[P^{M}, \bar{t}_{\widehat{\alpha}}\right]=C^{I M_{\widehat{\alpha}} t_{I}}, \quad C^{I M_{\widehat{\alpha}}}=\left(C^{I M}{ }_{\alpha}, C^{I M_{\tilde{\alpha}}}\right)
$$

Define
new constrained fields

For gauge-invariance of duality equation need more fields index

$$
\begin{aligned}
& R\left(\Lambda_{1}\right) \otimes R\left(\Lambda_{1}\right)=R\left(2 \Lambda_{1}\right) \oplus R\left(\tilde{N}_{2}\right) \oplus \stackrel{\Lambda}{R_{\text {section }}} \\
& \Pi^{\tilde{\alpha}}{ }_{M N} \Pi^{\widehat{\Lambda}_{M N}}
\end{aligned}
$$

E_{11} gauge transformations

$$
\begin{aligned}
\delta_{\xi} J_{M}{ }^{\alpha}= & \mathcal{L}_{\xi} J_{M}{ }^{\alpha}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) \\
\delta_{\xi} \chi_{M}{ }^{\tilde{\alpha}}= & \mathcal{L}_{\xi} \chi_{M}{ }^{\tilde{\alpha}}+T^{\tilde{\alpha} N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) \\
& \quad+\Pi^{\tilde{\alpha}}{ }_{Q P} \mathcal{M}^{N Q} \partial_{M} \partial_{Q} \xi^{P} \\
\delta_{\xi} \zeta_{M}{ }^{\hat{\Lambda}}= & \mathcal{L}_{\xi} \zeta_{M}{ }^{\hat{\Lambda}}+\Pi^{\hat{\Lambda}}{ }_{Q P} \mathcal{M}^{N Q} \partial_{M} \partial_{Q} \xi^{P}
\end{aligned}
$$

E_{11} gauge transformations

$$
\begin{aligned}
\delta_{\xi} J_{M}^{\alpha}= & \mathcal{L}_{\xi} J_{M}{ }^{\alpha}+T^{\alpha N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) \\
\delta_{\xi} \chi_{M}{ }^{\tilde{\alpha}}= & \mathcal{L}_{\xi} \chi_{M}{ }^{\tilde{\alpha}}+T^{\tilde{\alpha} N}{ }_{P}\left(\partial_{M} \partial_{N} \xi^{P}+\mathcal{M}_{N Q} \mathcal{M}^{P R} \partial_{R} \partial_{M} \xi^{Q}\right) \\
& \quad+\Pi^{\tilde{\alpha}}{ }_{Q P} \mathcal{M}^{N Q} \partial_{M} \partial_{Q} \xi^{P} \\
\delta_{\xi} \zeta_{M}{ }^{\hat{\Lambda}}= & \mathcal{L}_{\xi} \zeta_{M}{ }^{\hat{\Lambda}}+\Pi^{\hat{\Lambda}}{ }_{Q P} \mathcal{M}^{N Q} \partial_{M} \partial_{Q} \xi^{P}
\end{aligned}
$$

give gauge-invariant duality equation

$$
\mathcal{M}_{I J} F^{J}=\Omega_{I J} F^{J}
$$

if 'master identity' satisfied

$$
\Omega_{I J} C^{J M}{ }_{\widehat{\alpha}} T_{Q}^{\widehat{\alpha} N}=\bar{C}_{I Q}{ }^{\tilde{\beta}} \Pi_{\tilde{\beta}}^{M N}+\bar{C}_{I Q}{ }^{\widehat{\Lambda}} \Pi_{\widehat{\Lambda}}^{M N}
$$ indices moved with η

Only partial proof of this identity available!

Constrained fields

Why is duality equation not sufficient?

Constrained fields

Why is duality equation not sufficient?
Constrained fields $\chi_{M}{ }^{\tilde{\alpha}}$ and $\zeta_{M}{ }^{\widehat{\Lambda}}$ appear algebraically in most $F^{I} \Rightarrow$ all equations but $F_{4}=\star F_{7}$ 'empty'

Constrained fields

Why is duality equation not sufficient?
Constrained fields $\chi_{M}{ }^{\tilde{\alpha}}$ and $\zeta_{M}{ }^{\widehat{\Lambda}}$ appear algebraically in most $F^{I} \Rightarrow$ all equations but $F_{4}=\star F_{7}$ 'empty'
\Rightarrow need independent equations for constrained fields

Constrained fields

Why is duality equation not sufficient?
Constrained fields $\chi_{M}{ }^{\tilde{\alpha}}$ and $\zeta_{M}{ }^{\widehat{\Lambda}}$ appear algebraically in most $F^{I} \Rightarrow$ all equations but $F_{4}=\star F_{7}$ 'empty'
\Rightarrow need independent equations for constrained fields
Expect (pseudo-)Lagrangian of ExFT type $\left[\begin{array}{c}\text { Hohm } \\ \text { samtiteben }\end{array}\right]$

Constrained fields

Why is duality equation not sufficient?
Constrained fields $\chi_{M}{ }^{\tilde{\alpha}}$ and $\zeta_{M}{ }^{\widehat{\Lambda}}$ appear algebraically in most $F^{I} \Rightarrow$ all equations but $F_{4}=\star F_{7}$ 'empty'
\Rightarrow need independent equations for constrained fields
Expect (pseudo-)Lagrangian of ExFT type $\left[\begin{array}{c}\text { Hohm } \\ \text { samtiteben }\end{array}\right]$
Technical point: Recall that for E_{n} ExFT with $n \geq 8$ new structures appear due to non-closure of generalised diffeomorphisms $\left.\left[\begin{array}{c}\text { Coimbra, waldram } \\ \text { Strickland-Constable }\end{array}\right] \begin{array}{c}\text { Berman, Cederwall } \\ \text { AK, Thompson }\end{array}\right]\left[\begin{array}{c}\text { Hohm } \\ \text { Samiteben }\end{array}\right]\left[\begin{array}{c}\text { eedervail } \\ \text { Paimkvist }\end{array}\right]$.
Requires 'ancillary' gauge parameter $\Sigma_{M}{ }^{\tilde{I}}$ where \tilde{I} labels E_{11} representation $R\left(\Lambda_{3}\right) \oplus \ldots$, index M section constrained. Have invariant tensor $C^{\tilde{I}}{ }_{P \widehat{\alpha}}$

E_{11} ExFT pseudo-Lagrangian

Write in terms of four pieces

$$
\mathcal{L}_{E_{11}}=\mathcal{L}_{\mathrm{pot}_{1}}+\mathcal{L}_{\mathrm{pot}_{2}}+\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {top }}
$$

E_{11} ExFT pseudo-Lagrangian

Write in terms of four pieces

$$
\mathcal{L}_{E_{11}}=\mathcal{L}_{\text {pot }_{1}}+\mathcal{L}_{\text {pot }_{2}}+\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {top }}
$$

'Universal potential term' $\left.\begin{array}{c}\text { Hohm } \\ \text { Samtleben }\end{array}\right] \begin{gathered}\text { Cederwail } \\ \text { Palmkvist }\end{gathered}$ only E_{11} current

$$
\mathcal{L}_{\text {pot }_{1}}=-\frac{1}{4} \kappa_{\alpha \beta} \mathcal{M}^{M N} J_{M}{ }^{\alpha} J_{N}{ }^{\beta}+\frac{1}{2} J_{M \alpha} T^{\beta M}{ }_{P} \mathcal{M}^{P Q} T^{\alpha N}{ }_{Q} J_{N \beta}
$$

E_{11} ExFT pseudo-Lagrangian

Write in terms of four pieces

$$
\mathcal{L}_{E_{11}}=\mathcal{L}_{\mathrm{pot}_{1}}+\mathcal{L}_{\mathrm{pot}_{2}}+\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {top }}
$$

'Universal potential term' $\left[\begin{array}{c}\text { Hohm } \\ \text { samtleben }\end{array}\right]\left[\begin{array}{c}\text { Cederwalif } \\ \text { Palmkvist }\end{array}\right] \quad$ only E_{11} current

$$
\mathcal{L}_{\mathrm{pot}_{1}}=-\frac{1}{4} \kappa_{\alpha \beta} \mathcal{M}^{M N} J_{M}{ }^{\alpha} J_{N}{ }^{\beta}+\frac{1}{2} J_{M \alpha} T^{\beta M}{ }_{P} \mathcal{M}^{P Q} T^{\alpha N}{ }_{Q} J_{N \beta}
$$

'Ancillary potential term' $\left[\begin{array}{c}\text { Hohm } \\ \text { samteben }\end{array}\right]\left[\begin{array}{c}\text { Cederwall } \\ \text { Paimkuist }\end{array}\right.$
E_{11} current
and constrained $\chi_{M}{ }^{\tilde{\alpha}}$

$$
\mathcal{L}_{\mathrm{pot}_{2}}=-\frac{1}{2} \mathcal{M}_{\tilde{I} \tilde{J}} C^{\tilde{I}}{ }_{P \widehat{\alpha}} C^{\tilde{J}}{ }_{Q \widehat{\beta}} \mathcal{M}^{Q M} \mathcal{M}^{P N} J_{M}{ }^{\widehat{\alpha}} J_{N} \widehat{\beta}
$$

Uses the representation with index \tilde{I} furnished by ancillary gauge transformation. Generalises extra E_{8} term

E_{11} ExFT pseudo-Lagrangian

all fields

$$
\begin{aligned}
\mathcal{L}_{\text {kin }}= & \frac{1}{4} \mathcal{M}_{I J} C^{I M_{\widehat{\alpha}}} C^{J N_{\widehat{\beta}}} J_{M}{ }^{\widehat{\alpha}} J_{N}{ }^{\widehat{\beta}}-\frac{1}{2} \mathcal{M}_{I J} C^{I M_{\widehat{\alpha}} C^{J N_{\widehat{\Lambda}}} J_{M}{ }_{\widehat{\alpha}} \zeta_{N}{ }_{N}} \\
& -\frac{1}{4} \mathcal{M}_{I J} C^{I M_{\widehat{\Lambda}} C^{J N_{\widehat{\Xi}} \zeta_{M}}{ }^{\widehat{\Lambda}} \zeta_{N} \widehat{\Xi}=\frac{1}{4} \mathcal{M}_{I J} F^{I} F^{J}+O(\zeta)}
\end{aligned}
$$

E_{11} ExFT pseudo-Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {kin }}= & \frac{1}{4} \mathcal{M}_{I J} C^{I M_{\widehat{\alpha}}} C^{J N_{\widehat{\beta}}} J_{M}{ }^{\widehat{\alpha}} J_{N}{ }^{\widehat{\beta}}-\frac{1}{2} \mathcal{M}_{I J} C^{I M}{ }_{\widehat{\alpha}} C^{J N}{ }_{\widehat{\Lambda}} J_{M}{ }^{\widehat{\alpha}} \zeta_{N}{ }^{\widehat{\Lambda}} \\
& -\frac{1}{4} \mathcal{M}_{I J} C^{I M}{ }_{\widehat{\Lambda}} C^{J N_{\widehat{\Xi}} \zeta_{M}{ }^{\widehat{\Lambda}} \zeta_{N} \widehat{\Xi}=\frac{1}{4} \mathcal{M}_{I J} F^{I} F^{J}+O(\zeta)}
\end{aligned}
$$

For topological term (no explicit \mathcal{M} dependence) take

$$
\begin{array}{rlr}
\mathcal{L}_{\text {top }}= & \frac{1}{2} \Pi_{\tilde{\alpha}}{ }^{M N}\left(2 \partial_{[M} \chi_{N]}{ }^{\tilde{\alpha}}+J_{[M}{ }^{\alpha} T_{\alpha}{ }_{\alpha}^{\tilde{\alpha}}{ }_{\tilde{\beta}} \chi_{N]}{ }^{\tilde{\beta}}+J_{M}{ }^{\alpha} K_{[\alpha}{ }^{\tilde{\alpha}}{ }_{\beta]} J_{N}{ }^{\beta}\right) \\
& -\frac{1}{2} \Omega_{I J} C^{I M}{ }_{\hat{\alpha}} C^{J N}{ }_{\widehat{\Lambda}} J_{M}{ }^{\widehat{\alpha}} \zeta_{N}{ }^{\widehat{\Lambda}} & \text { all fields }
\end{array}
$$

First line is rigid E_{11}-invariant $d \chi$ total derivative

E_{11} ExFT

Pseudo-Lagrangian $\mathcal{L}_{E_{11}}$

- is gauge-invariant: $\delta_{\xi} \mathcal{L}_{E_{11}}=\partial_{M}\left(\xi^{M} \mathcal{L}_{E_{11}}\right)$
- combination of terms fixed by this requirement. Split somewhat artificial
- when varied w.r.t. constrained fields produces subset of duality equation $\mathcal{M}_{I J} F^{J}=\Omega_{I J} F^{J} \quad \Rightarrow$ consistent \checkmark
- when varied w.r.t. E_{11} fields gives needed equations for constrained fields

E_{11} ExFT

Pseudo-Lagrangian $\mathcal{L}_{E_{11}}$

- is gauge-invariant: $\delta_{\xi} \mathcal{L}_{E_{11}}=\partial_{M}\left(\xi^{M} \mathcal{L}_{E_{11}}\right)$
- combination of terms fixed by this requirement. Split somewhat artificial
- when varied w.r.t. constrained fields produces subset of duality equation $\mathcal{M}_{I J} F^{J}=\Omega_{I J} F^{J} \quad \Rightarrow$ consistent \checkmark
- when varied w.r.t. E_{11} fields gives needed equations for constrained fields

Question: How does this describe $D=11$ supergravity?

E_{11} ExFT and $D=11$ SUGRA

Write pseudo-Lagrangian on $G L(11)$ solution to section constraint

$$
\begin{aligned}
\mathcal{L}_{E_{11}}= & \sqrt{-g}\left(R-\frac{1}{2 \cdot 4!} \mathcal{F}_{n_{1} \ldots n_{4}} \mathcal{F}^{n_{1} \ldots n_{4}}\right)-\frac{1}{144^{2}} \varepsilon^{\varepsilon_{1} \ldots n_{11}} A_{n_{1} n_{2} n_{3}} \mathcal{F}_{n_{4} \ldots n_{7}} \mathcal{F}_{n_{8} \ldots n_{11}} \\
& +\partial(\cdots)+\sum_{k=2}^{\infty}\left|\mathcal{E}_{(k)}\right|^{2} \leftarrow \text { can be ignored with duality equation }
\end{aligned}
$$

E_{11} ExFT and $D=11$ SUGRA

Write pseudo-Lagrangian on $G L(11)$ solution to section constraint

$$
\begin{aligned}
\mathcal{L}_{E_{11}}= & \sqrt{-g}\left(R-\frac{1}{2 \cdot 4!} \mathcal{F}_{n_{1} \ldots n_{4}} \mathcal{F}^{n_{1} \ldots n_{4}}\right)-\frac{1}{144^{2}} \varepsilon^{n_{1} \ldots n_{11}} A_{n_{1} n_{2} n_{3}} \mathcal{F}_{n_{4} \ldots n_{7}} \mathcal{F}_{n_{8} \ldots n_{11}} \\
& +\partial(\cdots)+\sum_{k=2}^{\infty}\left|\mathcal{E}_{I_{(k)}}\right|^{2} \leftarrow \text { can be ignored with duality equation }
\end{aligned}
$$

Produces exactly $D=11$ SUGRA equations of motion

E_{11} ExFT and $D=11$ SUGRA

Write pseudo-Lagrangian on $G L(11)$ solution to section constraint

$$
\begin{aligned}
\mathcal{L}_{E_{11}}= & \sqrt{-g}\left(R-\frac{1}{2 \cdot 4!} \mathcal{F}_{n_{1} \ldots n_{4}} \mathcal{F}^{n_{1} \ldots n_{4}}\right)-\frac{1}{144^{2}} \varepsilon^{n_{1} \ldots n_{11}} A_{n_{1} n_{2} n_{3}} \mathcal{F}_{n_{4} \ldots n_{7}} \mathcal{F}_{n_{8} \ldots n_{11}} \\
& +\partial(\cdots)+\sum_{k=2}^{\infty}\left|\mathcal{E}_{I_{k 8}}\right|^{2} \leftarrow \text { can be ignored with duality equation }
\end{aligned}
$$

Produces exactly $D=11$ SUGRA equations of motion
Similar analysis for E_{8} ExFT
Expect same for $G L(D) \times E_{11-D}(D \geq 2)$

E_{11} ExFT and $D=11$ SUGRA

Write pseudo-Lagrangian on $G L(11)$ solution to section constraint
$\mathcal{L}_{E_{11}}=\sqrt{-g}\left(R-\frac{1}{2 \cdot 4!} \mathcal{F}_{n_{1} \ldots n_{4}} \mathcal{F}^{n_{1} \ldots n_{4}}\right)-\frac{1}{144^{2}} \varepsilon^{n_{1} \ldots n_{11}} A_{n_{1} n_{2} n_{3}} \mathcal{F}_{n_{4} \ldots n_{7}} \mathcal{F}_{n_{8} \ldots n_{11}}$
$+\partial(\cdots)+\sum_{k=2}^{\infty}\left|\mathcal{E}_{I_{(k)}}\right|^{2} \longleftarrow$ can be ignored with duality equation
Produces exactly $D=11$ SUGRA equations of motion
Similar analysis for E_{8} ExFT
Expect same for $G L(D) \times E_{11-D}(D \geq 2)$
Note: This does not show E_{11} invariance of $D=11$ SUGRA. Broken by solution to section constraint

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [west $]\left[\begin{array}{c}\text { Boulanger } \\ \text { Hohm }\end{array}\right]$
- Some remaining assumptions about E_{11} representations ($\eta_{I J}$, 'master' identity)

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [west $]$ [Bulanger
- Some remaining assumptions about E_{11} representations ($\eta_{I J}$, 'master' identity)
What next?
- Clarify relation to cosmological E_{10} model
- Add fermions and supersymmetry? Exotic branes?
- Could do the same for other algebras, $D=4 \mathrm{GR}$

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [west $]\left[\begin{array}{c}\text { Boulanger } \\ \text { Hohm }\end{array}\right]$
- Some remaining assumptions about E_{11} representations ($\eta_{I J}$, 'master' identity)
What next?
- Clarify relation to cosmological E_{10} model
- Add fermions and supersymmetry? Exotic branes?
- Could do the same for other algebras, $D=4$ GR

Thank you for your attention

