String size black holes

Juan Maldacena

Outline

- Review
 - String size black holes.
 - Highly excited strings.
 - Strings in D=4 and the Horowitz-Polchinski solution.
 - A D=2 black hole: an exact string background based on SL(2)/U(1).
 - 2d black hole from large D black holes.

- Work in progress with Yiming Chen
 - Using the SL(2)/U(1) + large D approximation to describe stringy black hole.
 - Appearance of a large stringy thermal atmosphere as we tune to a critical mass/temperature.
 - Discussion on the chaos exponent.

- We will be considering a weakly coupled string theory, $\,g\ll 1$.
- Set $\ell_s = 1 = \sqrt{\alpha'}$ and $G_N \sim g^2$
- We will discuss the bosonic string. Similar statements hold for the type II and heterotic superstrings.

$$l_s = 1$$

$$l_{Pl} \ll 1$$

Highly excited free string

$$M \sim 2\sqrt{N}$$
, $S = 4\pi \sqrt{\frac{c}{6}N}$

c= 24 for the bosonic string.

$$\beta = \frac{dS}{dM} = 4 \ \pi \equiv \beta_H$$

Hagedorn (inverse) temperature.

Thermal ensemble is well defined only for $\beta > \beta_H$

 $Z \sim \int d M (...) e^{(\beta_H - \beta)M}$

Black holes

- Well defined if $r_s \gg 1$
- Leading order α' corrections were computed.

Callan, Myers, Perry Myers (type II).

• What happens as they approach the string size?.

Bowick, Smolin, Wijewardhana; Susskind; Horowitz, Polchinski

Corrections are important before we can reach the correspondence point.

Is there a smooth transition between black holes and highly excited strings ?

Motivation:

- String picture: Microstates are explicit, but no interior.
- Black holes: there is an interior, but not obvious microstates.

Horowitz, Polchinski

Some comments on strings at finite temperature

Winding mode formalism

• Finite temperature \rightarrow compactify the Euclidean time direction

Self interactions ? The most important one is gravity

$$S = \frac{1}{g^2} \int \sqrt{g} R + \frac{1}{g^2} \int |\nabla \chi|^2 + m^2(\beta) |\chi|^2,$$

For $\beta \sim \beta_H \rightarrow$ winding mode is light and the field theory approximation is good.

Simple action for the thermodynamics of strings

$$S = \frac{1}{g^2} \int \sqrt{g} R + \frac{1}{g^2} \int |\nabla \chi|^2 + m^2(\beta) |\chi|^2$$

This leads to an interesting solution in D=4.

Self gravitating string

Horowitz-Polchinski

- Localized solution in 3 spatial dimensions. (D=4).
- Localized profile for the winding mode.
- Describes a self gravitating string in thermodynamic equilibrium.
- Size decreases as mass increases. Size $\sim \frac{1}{g^2 M}$. Should be larger than 1 to trust the gravity approximation. Breaks down before the correspondence point.
- Temperature decreases as mass increases. (negative specific heat)

Entropy of the self gravitating string

- We can compute the entropy from the classical action.
- Entropy of order $\frac{1}{g^2}$.

$$S = (1 - \beta \partial_{\beta})(-I) = \frac{\beta}{g^2} \int d^{D-1}x \left[\beta \ \partial_{\beta}m^2(\beta)\right] |\chi|^2 = 2 \frac{\beta}{g^2} \int d^{D-1}x \left(\frac{\beta^2}{4\pi^2}\right) |\chi|^2$$

Only a contribution from the explicit dependence on β .

To leading order this gives
$$S = \beta_H M + \# g^4 M^3 + \cdots$$

We computed correction using the solution.

Black holes and winding condensates

Winding one function \rightarrow computed by a worldsheet wrapping the cigar.

$$\langle \chi(r) \rangle \propto e^{-TA} \sim e^{-\beta(r-r_0)}, \qquad \beta \gg \beta_H$$

Is present for any black hole, but it is small.

We can view it as a thermal atmosphere of strings.

It is a classical contribution to the entropy, formally of order $\frac{1}{g^2}$, but not calculable (to my knowledge), since it is concentrated near the horizon. Susskind, Uglum ; Dabholkar

 In D=4 there might be an interpolating worldsheet conformal field theory that connects the black hole with the string at finite temperature. We now review a particular black hole solution, which is exactly solvable in string theory (as a worldsheet CFT).

The cigar, or SL(2)/U(1) black hole

- This is a two dimensional black hole.
- It arises as a gauged WZW model.
- It can be analyzed with the tools of Kac-Moody current algebras. Giveon, Ku

Witten Mandal, Sengupta, Wadia Dijkgraaf, Verlinde, Verlinde, Becker, Becker,

Kazakov, Kostov, Kutasov, Giveon, Kutasov,

 $ds^2 = k \left(d\rho^2 + \tanh^2 \rho d\tau^2 \right), \qquad e^{-2\phi} = e^{-2\phi_h} \cosh^2 \rho$ String coupling is space dependent

τ

Dilaton goes to weak coupling at infinity.

k = parameter setting the radius. This metric description is good for k>>1. The algebraic description is good for any k \rightarrow stringy curvatures.

 ϕ_h is a constant that sets the dilaton at the tip \rightarrow gives the entropy (for k>>1).

The cigar, or SL(2)/U(1) black hole

Witten Mandal, Sengupta, Wadia Dijkgraaf, Verlinde, Verlinde, Becker, Becker,

•••

....

Kazakov, Kostov, Kutasov, Giveon, Kutasov,

k sets the gradient of the dilaton far away and the central charge of the wordsheet CFT.

$$(\nabla \phi)^2 = \frac{1}{k-2}$$
 $c = 2 + \frac{6}{k-2}$

Radius of the circle at infinity, $\beta = 2\pi\sqrt{k}$

Temperature is fixed for fixed theory (i.e. fixed k)

Winding condensate

$$\rho$$
 $\uparrow \tau$

Fateev, Zamolodchikov, Zamolodchikov Kazakov, Kostov, Kutasov.

The winding condensate can be computed explicitly. We find

$$\chi = e^{-(k-2)\rho}, \qquad e^{-\phi}\chi = \hat{\chi} = e^{-\phi_h}e^{-(k-3)\rho} \qquad \qquad S = \int e^{-2\phi}(|\nabla\chi|^2 + \cdots), \rightarrow \hat{\chi} = e^{-\phi}\chi$$
Canonically normalized for

Decreases only for k>3.

eld

The solution changes qualitatively at k=3. The winding condensate changes from being localized near the tip to being sourced at infinity. It changes from being normalizable to non-normalizable. Karczmarek, JM, Strominger

The contribution to the entropy from the winding condensate becomes infinite at k=3.

Some conclusions:

- The black hole picture and intuition good for k>3 (or $\beta > \sqrt{3} 2\pi$)
- For k→ 3 a large winding condensate emerges → atmosphere of strings extends to infinity.
- It was suggested that we should interpret the solution for k<3 as a condensate of winding strings only, with no black hole.
- Maybe in all cases we have two alternative pictures ?

Giveon, Kutasov, Rabinovici, Sever

Jafferis, Schneider

...

Let us now review one more idea...

Large D Schwarzschild black hole \rightarrow Sphere x (2 d black hole)

Emparan, Grumiller, Tanabe

From D to 2 dimensional black holes

Emparan, Grumiller, Tanabe

• A D-dimensional Schwarzschild black hole can be approximated by the two dimensional one when $D \gg 1$.

$$ds^{2} = f dt^{2} + \frac{dr^{2}}{f} + r^{2} d\Omega_{D-2}^{2}, \qquad f = 1 - \frac{r_{0}^{D-3}}{r^{D-3}}$$

Define

$$\rightarrow r^{D-3} = r_0^{D-3} \cosh^2 \rho$$

The r and t components of the metric become $ds^2 = k (d\rho^2 + \tanh^2 \rho d\tau^2)$

with:
$$k = \frac{2r_0}{D}$$
, $k \gg 1$

Same as two dimensional black hole

This can be viewed as giving $e^{-2\phi}\sim \sqrt{g}\sim r^{D-2} \propto \cosh^2
ho$

Now we come to our work in progress

Yiming Chen, JM

We want to extend the large D observation to small k, or stringy curvatures. (the curvature is high in two of the dimensions)

And use it to make a more precise statement for Schwarzschild black holes in 26 or 10 dimensions, in the approximation that $26, 10 \gg 1$.

Matching the central charges to determine k

Sphere part of the sigma model can be approximated as an almost CFT with a slowly varying radius.

Its central charge can be computed using large radius formulas.

$$c_{Sphere} = D - 2 - \frac{6}{4}R \sim D - 2 - 6\left(\frac{D}{2r}\right)^2, \quad \rightarrow \quad 6\left(\frac{D}{2r_0}\right)^2$$

$$6\left(\frac{D}{2r_0}\right)^2 = \frac{6}{k-2}$$

Match the central charge deficit on the sphere with the excess in the cigar

Tseytlin

$$\frac{\beta}{2\pi} = \sqrt{k}$$

Exact temperature to r_0 relation. (at large D)

Check:

The leading correction can be matched against the large D limit of the α' corrected black holes.

Callan, Myers, Perry (bosonic, heterotic)

Myers (type II) (needs correction)

• As we vary the size of the horizon, we are varying k, the parameter of the cigar theory.

Expansion of the stringy thermal atmosphere

The winding condensate expands far from the horizon \rightarrow makes a large contribution the entropy and the mass.

Black hole becomes dominated by the highly excited string.

Our method ceases to be valid at $k - 3 \sim \frac{1}{p}$.

We do not know what happens for lower masses.

Let us now discuss another computation we can do with this description

Chaos exponent

- We expect that the dynamics of black holes is chaotic.
- This can be made very concrete by looking at special correlation functions: Out of time order correlators.
- These receive an interesting contribution from a scattering process near the horizon.

Chaos exponent from the spin of the exchanged state

Conjectured candidate exchanged state

$$|\Psi\rangle = (J_{-1}^+ \bar{J}_{-1}^-)^{\frac{s}{2}} |j, -\frac{1}{2}, \frac{1}{2}\rangle, \quad \text{for } j \to \frac{1}{2}$$

s-1

We expect that the type of state we exchange has an ``orbital'' wavefunction involving $\delta(X^+)$ whose spin is minus one. Metric shock wave: $\delta g_{++} \sim \delta(X^+)$

 $s-1 = 1 - \frac{1}{k} + \cdots$ for large $k \rightarrow$ Matches the first correction of Shenker and Stanford.

We get a non-zero value at k=3.

Conclusions

- We discussed how the large D approximation for Schwarzschild black holes leads to the cigar geometry.
- The cigar geometry can have a string scale curvature and we can still solve it.
- Used it to explore the geometry of a black hole as we approach (and surpass) the Hagedorn temperature.
- At a critical size/temperature the black hole develops a large stringy "halo" or atmosphere.
- We do not think that the black hole makes sense for lower masses.
- We computed the chaos exponent and found it is non-zero at the transition point.

Questions

- Can similar large D approximations be used for other string scale black holes?
- What can we say about the gravitational picture for the microstates and the black hole interior?