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* Review
e String size black holes.
* Highly excited strings.
Strings in D=4 and the Horowitz-Polchinski solution.
A D=2 black hole: an exact string background based on SL(2)/U(1).
2d black hole from large D black holes.

* Work in progress with Yiming Chen
* Using the SL(2)/U(1) + large D approximation to describe stringy black hole.

* Appearance of a large stringy thermal atmosphere as we tune to a critical
mass/temperature.

e Discussion on the chaos exponent.




* We will be considering a weakly coupled string theory, g < 1.
* Set £, =1= Va' and Gy~ g>

* We will discuss the bosonic string. Similar statements hold for the type Il and
heterotic superstrings.



Highly excited free string

,c
M ~ 2VN, S=4n gN c= 24 for the bosonic string.
ds
b=y =4m="hu
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, Size ~ N4
Hagedorn (inverse) temperature.

Thermal ensemble is well defined only for § > fy Z~[dM (. )e (Bu—B)M



Black holes

* Well defined if r; > 1

Callan, Myers, Perry

 Leading order o’ corrections were computed. Myers (type 11

* What happens as they approach the string size?.
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Corrections are important before we can reach the correspondence point.



s there a smooth transition between black
holes and highly excited strings ?

Motivation:

 String picture: Microstates are explicit, but no interior.

e Black holes: there is an interior, but not obvious microstates.



Review



A Horowitz, Polchinski

Entropy

X Or have a second order transition at some point...
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D>>4
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Free string

We will describe this region later.
String size black hole.
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Some comments on strings at finite temperature



Sathiapalan; Kogan; Atick, Witten

Winding mode formalism

* Finite temperature > compactify the Euclidean time direction

QO 0O

Winding mode.

S = g—lzf Vx|? + m2(B)|x|4, m2(B) «< (B* — B&) Becomes light as 8 — By

Self interactions ? The most important one is gravity

1 1
S = ?f VIR -|—?f |V)(|2 + mz(l[})b('z’ For B ~ By > winding mode is light and the

field theory approximation is good.



Simple action for the thermodynamics of strings

1 1
S = ?f\/ER +g—2f V|2 + m?(B)|x|?

This leads to an interesting solution in D=4.



Se H: graVItatl ng Strl ng Horowitz-Polchinski

* Localized solution in 3 spatial dimensions. (D=4).

* Localized profile for the winding mode.

* Describes a self gravitating string in thermodynamic equilibrium.

e Size decreases as mass increases. Size ~

1
g*M

. Should be larger than 1 to

trust the gravity approximation. Breaks down before the correspondence point.

* Temperatu re decreases as mass increases. (negative specific heat)

Entropy
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Entropy of the self gravitating string

* We can compute the entropy from the classical action.

* Entropy of order gl—z.

S =(1-op)(-D = L[ P x (g ogm?(B)] 1117 = 2L [ aPx (L) 1x12

47172

Only a contribution from the explicit dependence on f.

To leading order this gives S = ByM + # g*M3 + --- ‘

We computed correction using the solution.
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Black holes and winding condensates

( ; } O T Euclidean time
Fo
;

Winding one function = computed by a worldsheet wrapping the cigar.

(x()) x e T4 ~ g=Br=To), B > By

Is present for any black hole, but it is small.

We can view it as a thermal atmosphere of strings.

: : I 1
It is a classical contribution to the entropy, formally of order 72 but not calculable (to my knowledge),

since it is concentrated near the horizon. Susskind, Uglum ; Dabholkar
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Conclusion

* In D=4 there might be an interpolating worldsheet conformal field
theory that connects the black hole with the string at finite
temperature.



We now review a particular black hole solution,

which is exactly solvable in string theory (as a
worldsheet CFT).



The cigar, or SL(2)/U(1) black hole

* This is a two dimensional black hole. e ore
. Dijkgraaf, Verlinde, Verlinde,
* It arises as a gauged WZW model. secker, Becker,

* It can be analyzed with the tools of Kac-Moody current algebras. creon ko -

Giveon, Kutasov,

Dilaton goes to weak coupling at infinity.

<& :

ds? = k (dp? + tanh?pdt?), e~ 2% = ¢72Pncosh?p <+ String coupling is space dependent

k = parameter setting the radius. This metric description is good for k>>1.
The algebraic description is good for any k = stringy curvatures.

¢, is a constant that sets the dilaton at the tip = gives the entropy (for k>>1).



The cigar, or SL(2)/U(1) black hole

Witten

Mandal, Sengupta, Wadia
é T T Dijkgraaf, Verlinde, Verlinde,

Becker, Becker,

Kazakov, Kostov, Kutasov,
Giveon, Kutasov,

k sets the gradient of the dilaton far away and the central charge of the wordsheet CFT.

1
(V) =1— =2+
k—2 k-2

Radius of the circle at infinity, B = 2nvk Temperature is fixed for fixed theory (i.e. fixed k)



Winding condensate

Fateev, Zamolodchikov, Zamolodchikov
5P T T
Kazakov, Kostov, Kutasov.

The winding condensate can be computed explicitly. We find

y =e " (k=2p e Py =5 =e Pre(k-3)p S=[e (Vx> +),- /f =e %y

T

Decreases only for k>3.

Canonically normalized field

The solution changes qualitatively at k=3. The winding condensate changes from being localized near the tip

to being sourced at infinity. It changes from being normalizable to non-normalizable. Karczmarek, JM, Strominger

The contribution to the entropy from the winding condensate becomes infinite at k=3.



Some conclusions:

* The black hole picture and intuition good for k>3 (or § > /3 2m)

* For k=> 3 a large winding condensate emerges =2 atmosphere of
strings extends to infinity.

* It was suggested that we should interpret the solution for k<3 as a
condensate of winding strings only, with no black hole.

Giveon, Kutasov, Rabinovici, Sever

* Maybe in all cases we have two alternative pictures ? Jafferis, Schneider



Let Us now review one more idea...



Large D Schwarzschild black hole =

Sphere x (2 d black hole )

Emparan, Grumiller, Tanabe



From D to 2 dimensional black holes

Emparan, Grumiller, Tanabe

* A D-dimensional Schwarzschild black hole can be approximated by
the two dimensional one when D > 1.

dr? ry =3
ds? = fdt? +—+7r2d0%_,, f=1--

Define
rP=3 = 1P 3cosh?p
The r and t components of the metric become ds? = k (dp? + tanh?pdt?)

with: k = ﬂ’ k> 1
D
/ Same as two dimensional black hole

This can be viewed as giving e 2% ~ /g ~ rP~2 « cosh?p



Now we come to our work in progress

Yiming Chen, IM



We want to extend the large D observation to small k, or stringy
curvatures. (the curvature is high in two of the dimensions)

And use it to make a more precise statement for Schwarzschild black
holes in 26 or 10 dimensions, in the approximation that 26,10 > 1.



Matching the central charges to determine k

Sphere part of the sigma model can be approximated as an almost CFT with a slowly varying radius.

Its central charge can be computed using large radius formulas. Tseytlin
Csph —D—2 — ER ~D—=2 —6 (2)2 N 6 (2)2 — 6 Match the central charge deficit on the sphere
phere 4 2r) 27y k — 2 | with the excess in the cigar

Exact temperature to ry relation. (at large D)



Check:

The leading correction can be matched against the large D limit of the a’ corrected black
holes.

Callan, Myers, Perry (bosonic, heterotic)

Myers (type Il) (needs correction)



* As we vary the size of the horizon, we are varying k, the parameter of
the cigar theory.



Expansion of the stringy thermal atmosphere

Now consider the limit | 5 3+ ﬁ _Vk >3 :B_H — 9
21 ’ 21

Region where the SL(2)/U(1) black hole approximation is good

Region where the winding mode is tachyonic

The winding condensate expands far from the horizon > makes a large contribution the entropy and the mass.

Black hole becomes dominated by the highly excited string. D>>4

1

Our method ceasesto bevalidat kK —3 ~ >

We do not know what happens for lower masses.




Let us now discuss another computation we can do with
this description



C h a OS EX p O n e nt Shenker, Stanford; Kitaev

* We expect that the dynamics of black holes is chaotic.

* This can be made very concrete by looking at special correlation
functions: Out of time order correlators.

* These receive an interesting contribution from a scattering process
near the horizon.

X"«
< VOWOVOW©)
v Wy = L Gt

§ Graviton exchange =2 spin=22> 1 = il



Chaos exponent from the spin of the
exchanged state

__ S 11 1
Conjectured candidate exchanged state W)= (JX -2 |j, — o E) , for j — 5

f

We expect that the type of state we exchange has an “orbital” wavefunction involving 6 (X*) whose spin is minus one.

Metric shock wave: 8944+ ~ 6(X™)

1.0
L. =N _j(i_l) n Ug)z 0.8}
° k—2 k i
j=% ]03252 04|
02|
S 1 (s — 1)
=5+ + g 6 s 10 1z 1 "
2 4(k—-2) 4 k
s—1=1 % + --- for large k — Matches the first correction of Shenker and Stanford.

We get a non-zero value at k=3.



Conclusions

* We discussed how the large D approximation for Schwarzschild black holes
leads to the cigar geometry.

* The cigar geometry can have a string scale curvature and we can still solve
it.

* Used it to explore the geometry of a black hole as we approach (and
surpass) the Hagedorn temperature.

* At a critical size/temperature the black hole develops a large stringy “halo”
or atmosphere.

e We do not think that the black hole makes sense for lower masses.

 We computed the chaos exponent and found it is non-zero at the transition
point.



Questions

e Can similar large D approximations be used for other string scale
black holes?

* What can we say about the gravitational picture for the microstates
and the black hole interior?



