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• Review
• String size black holes. 
• Highly excited strings.
• Strings in D=4 and the Horowitz-Polchinski solution. 
• A D=2 black hole: an exact string background based on SL(2)/U(1). 
• 2d black hole from large D black holes. 

• Work in progress with Yiming Chen
• Using the SL(2)/U(1)  + large D approximation to describe stringy black hole. 
• Appearance of a large stringy thermal atmosphere as we tune to a critical 

mass/temperature.  
• Discussion on the chaos exponent. 



• We will be considering a weakly coupled string theory,  𝑔 ≪ 1 .  
• Set ℓ! =1= 𝛼′ and 𝐺"∼ 𝑔#

• We will discuss the bosonic string. Similar statements hold for the  type II and  
heterotic superstrings.

𝑙! = 1

𝑙!" ≪ 1



𝑀 ∼ 2 𝑁 , 𝑆 = 4𝜋
𝑐
6𝑁 c= 24  for the bosonic string.

𝛽 =
𝑑𝑆
𝑑𝑀 = 4 𝜋 ≡ 𝛽!

Size   ∼ 𝑁
!
"

Highly excited free string

Thermal ensemble is well defined only for 𝛽 > 𝛽!

Hagedorn (inverse) temperature.

𝑍 ∼ ∫ 𝑑 𝑀 (… )𝑒 "##" $



Black holes

• Well defined if 𝑟! ≫ 1

• Leading order 𝛼$ corrections were computed.

• What happens as they approach the string size?.  

Callan, Myers, Perry
Myers (type II). 



Black hole

Free string

Entropy

Mass1
𝑔%

String size black hole ?   “Correspondence point”

Bowick, Smolin, Wijewardhana;  Susskind;  Horowitz, Polchinski

Corrections are important before we can reach the correspondence point. 

𝑆 ∼ 𝑟&'#%, 𝑀 ∼ 𝑟&'#(, S ∝ 𝑀)* )
'#(

𝑟& ∼ 1



Is there a smooth transition between black 
holes and highly excited strings ?

• String picture:  Microstates are explicit, but no interior. 

• Black holes:  there is an interior, but not obvious microstates. 

Motivation:



Review



Free string
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1
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Horowitz, Polchinski

D=4

They might connect smoothly

Horowitz, Polchinski

x Or have a second order transition at some point… 



Free string

Entropy

Mass
1
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D>>4

Some “hysteresis”

We will describe this region later.
String size black hole.  



Some comments on strings at finite temperature



Winding mode formalism

• Finite temperature à compactify the Euclidean time direction

Sathiapalan; Kogan;  Atick, Witten

𝑆 = !
"!
∫ ∇𝜒 # +𝑚# 𝛽 𝜒 #, m# 𝛽 ∝ (𝛽# − 𝛽$#)

Winding mode. 

Self interactions ?   The most important one is gravity 

𝑆 =
1
𝑔#
∫ 𝑔𝑅 +

1
𝑔#
∫ ∇𝜒 # +𝑚# 𝛽 𝜒 #,

Becomes light as 𝛽 → 𝛽!

For 𝛽 ∼ 𝛽! à winding mode is light and the 
field theory approximation is good. 



This leads to an interesting solution in D=4. 

𝑆 =
1
𝑔#
∫ 𝑔𝑅 +

1
𝑔#
∫ ∇𝜒 # +𝑚# 𝛽 𝜒 #

Simple action for the thermodynamics of strings



Self gravitating string 
• Localized solution in 3 spatial dimensions. (D=4).  
• Localized profile for the winding mode. 
• Describes a self gravitating string in thermodynamic equilibrium.

• Size decreases as mass increases. Size ∼ 6
7!8

. Should be larger than 1 to 
trust the gravity approximation.  Breaks down before the correspondence point. 

• Temperature decreases as mass increases. (negative specific heat) 

Size >> 1

Horowitz-Polchinski



Entropy of the self gravitating string 
• We can compute the entropy from the classical action.

• Entropy of order 6
7!

.

𝑆 = 1 − 𝛽𝜕< −𝐼 = <
=& ∫ 𝑑

>?@𝑥 [𝛽 𝜕<𝑚A 𝛽 ] 𝜒 A = 2 <=& ∫ 𝑑
>?@𝑥 <&

BC& 𝜒 A

Only a contribution from the explicit dependence on 𝛽.

size

To leading order this gives 𝑆 = 𝛽E𝑀 + # 𝑔B𝑀F + ⋯

We computed correction using the solution. 



Black holes and winding condensates

Winding one function à computed by a worldsheet wrapping the cigar. 

𝜒(𝑟) ∝ 𝑒?G H ∼ 𝑒?< I?I' , 𝛽 ≫ 𝛽E

r
r0

It is a classical contribution to the entropy, formally of order !
"$

, but not calculable (to my knowledge), 

since it is concentrated near the horizon. Susskind, Uglum ;  Dabholkar 

We can view it as a thermal  atmosphere of strings. 

Euclidean time

Is present for any black hole, but it is small. 



Black hole + first correction

Naïve interpolating function ?

Inverse
temperature

Mass

𝛽#

Long string + gravity



Conclusion

• In D=4 there might be an interpolating worldsheet conformal field 
theory that connects the black hole with the string at finite 
temperature. 



We now review a particular black hole solution, 
which is exactly solvable in string theory (as a 
worldsheet CFT).  



The cigar, or SL(2)/U(1) black hole 
• This is a two dimensional black hole. 
• It arises as a gauged WZW model. 
• It can be analyzed with the tools of Kac-Moody current algebras. 

ρ τ

𝑑𝑠$ = 𝑘 𝑑𝜌$ + tanh$𝜌𝑑𝜏$ , 𝑒%$& = 𝑒%$&%cosh$𝜌

Dilaton goes to weak coupling at infinity. 

k = parameter setting the radius.  This metric description is good for k>>1. 
The algebraic description is good for any k à stringy curvatures. 

String coupling is space dependent

Witten 
Mandal, Sengupta, Wadia
Dijkgraaf, Verlinde, Verlinde,
Becker, Becker, 
…
Kazakov, Kostov, Kutasov,
Giveon, Kutasov, 
….

𝜙' is a constant that sets the dilaton at the tip à gives the entropy (for k>>1). 



The cigar, or SL(2)/U(1) black hole 

ρ τ

∇𝜙 $ =
1

k − 2

k sets the gradient of the dilaton far away and the central charge of the wordsheet CFT. 

𝑐 = 2 + (
)%$

Radius of the circle at infinity, 𝛽 = 2𝜋 𝑘 Temperature is fixed for fixed theory (i.e. fixed k)

Witten 
Mandal, Sengupta, Wadia
Dijkgraaf, Verlinde, Verlinde,
Becker, Becker, 
…
Kazakov, Kostov, Kutasov,
Giveon, Kutasov, 
….



Winding condensate

ρ τ

𝜒 = 𝑒 % )%$ *, 𝑒%&𝜒 = 𝜒̂ = 𝑒%&%𝑒% )%+ *

The winding condensate can be computed explicitly. We find 

𝑆 = ∫ 𝑒%$& ∇𝜒 $ +⋯ ,→ 𝜒̂ = 𝑒%&𝜒

Decreases only for k>3. 

The solution changes qualitatively at k=3. The winding condensate changes from being localized near the tip
to being sourced at infinity. It changes from being normalizable to non-normalizable. 

The contribution to the entropy from the winding condensate becomes infinite at k=3.  

Karczmarek, JM, Strominger

Fateev, Zamolodchikov, Zamolodchikov
Kazakov, Kostov, Kutasov. 

Canonically normalized field



Some conclusions:

• The black hole picture and intuition good for k>3 (or 𝛽 > 3 2𝜋)
• For kà 3 a large winding condensate emerges à atmosphere of 

strings extends to infinity. 

• It was suggested that we should interpret the solution for k<3 as a 
condensate of winding strings only, with no black hole.  

• Maybe in all cases we have two alternative pictures ?

Giveon, Kutasov, Rabinovici, Sever
…

Jafferis, Schneider



Let us now review one more idea…



Large D Schwarzschild black hole à

Sphere  x  (2 d black hole )
Emparan,  Grumiller, Tanabe



From D to 2 dimensional black holes

• A D-dimensional Schwarzschild black hole can be approximated by 
the two dimensional one when 𝐷 ≫ 1.

Emparan,  Grumiller, Tanabe

𝑑𝑠# = 𝑓 𝑑𝑡# +
𝑑𝑟#

𝑓
+ 𝑟#𝑑Ω9:## , 𝑓 = 1 −

𝑟;9:<

𝑟9:<

𝑟>?F = 𝑟_>?FcoshA𝜌
Define

The r and t components of the metric become 𝑑𝑠$ = 𝑘 𝑑𝜌$ + tanh$𝜌𝑑𝜏$

𝑘 = $ ,&
-
, k ≫ 1with:

Same as two dimensional black hole
This can be viewed as giving 𝑒%$& ∼ 𝑔 ∼ 𝑟-%$ ∝ cosh$𝜌



Now we come to our work in progress

Yiming Chen,  JM



We want to extend the large D observation to small k, or stringy 
curvatures.  (the curvature is high in two of the dimensions)

And use it to make a more precise statement for Schwarzschild black 
holes in 26 or 10 dimensions, in the approximation that 26, 10 ≫ 1.



Matching the central charges to determine k

𝛽
2𝜋

= 𝑘

𝑐./'0,0 = 𝐷 − 2 −
6
4𝑅 ∼ 𝐷 − 2 − 6

𝐷
2𝑟

$
, → 6

𝐷
2𝑟1

$
=

6
𝑘 − 2

Match the central charge deficit on the sphere
with the excess in the cigar

Sphere part of the sigma model  can be approximated as an almost CFT with a slowly varying radius. 

Its central charge can be computed using large radius formulas. Tseytlin

Exact temperature to r0 relation. (at large D)



Check:

The leading correction can be matched against the large D limit of the 𝛼c corrected black 
holes. 

Callan, Myers, Perry  (bosonic, heterotic)

Myers (type II) (needs correction) 



• As we vary the size of the horizon, we are varying k, the parameter of 
the cigar theory. 



Expansion of the stringy thermal atmosphere
𝛽
2𝜋 = 𝑘 → 3,

𝛽#
2𝜋 = 2

The winding condensate expands far from the horizon à makes a large contribution  the entropy and the mass. 

Black hole becomes dominated by the highly excited string. 

Our  method ceases to be valid at   𝑘 − 3 ∼ "
# .  

We do not know what happens for lower masses. 

k à 3+Now consider the limit

Region where the SL(2)/U(1) black hole approximation is good

Region where the winding mode is tachyonic



Let us now discuss another computation we can do with 
this description



Chaos exponent

• We expect that the dynamics of black holes is chaotic. 
• This can be made very  concrete by looking at special correlation 

functions: Out of time order correlators. 
• These receive an interesting contribution from a scattering process 

near the horizon.

X+

Graviton exchange à spin = 2à 𝜆 = $2
3

𝑉 𝑡 𝑊 0 𝑉 𝑡 𝑊 0
𝑊 𝑊 𝑉𝑉 = 1 − G4e56

Shenker, Stanford; Kitaev

X-

W

V



Chaos exponent from the spin of the 
exchanged state

Ψ = 𝐽%!& ̅𝐽%!%
'
# 𝑗, −

1
2
,
1
2
, for 𝑗 →

1
2

𝐿1 = 𝑁 −
𝑗 𝑗 − 1
𝑘 − 2 +

𝐽1+ $

𝑘

1 =
𝑠
2 +

1
4 𝑘 − 2 +

𝑠 − 1 $

4 𝑘

𝑗 =
1
2

𝐽!" =
𝑠 − 1
2

𝑠 − 1 = 1 −
1
𝑘 +⋯ for large 𝑘 → Matches the first correction of Shenker and Stanford.

Conjectured candidate exchanged state

We get a non-zero value at k=3.   

We expect that the type of state we exchange has an ``orbital’’ wavefunction involving 𝛿 𝑋7 whose spin is minus one. 

𝛿𝑔77 ∼ 𝛿(𝑋7)Metric shock wave: 



Conclusions

• We discussed how the large D approximation for Schwarzschild black holes 
leads to the cigar geometry.  
• The cigar geometry can have a string scale curvature and we can still solve 

it. 
• Used it to explore the geometry of a black hole as we approach (and 

surpass) the Hagedorn temperature. 
• At a critical size/temperature the black hole develops a large stringy “halo” 

or atmosphere. 
• We do not think that the black hole makes sense for lower masses. 
• We computed the chaos exponent and found it is non-zero at the transition 

point. 



Questions

• Can similar large D approximations be used for other string scale 
black holes?  
• What can we say about the gravitational picture for the microstates 

and the black hole interior? 


