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Motivation

Multi-particle Calogero-Moser-Sutherland systems [F. Calogero, 1969, 1971; J.Moser, 1970;
B. Sutherland, 1971, 1972] occupy a distinguished place among the integrable systems.

Supersymmetric generalizations of the Calogero-Moser-Sutherland models are of particular
interest among possible developments.

Most of the researches in these directions have been devoted to supersymmetrization of the
rational Calogero systems (see, for example, [D.Freedman, P.Mende, 1990;

L.Brink, T.Hansson, S.Konstein, M.Vasiliev, 1993;

S.Bellucci, A.Galajinsky, S.Krivonos, 2003;  S.Bellucci, A.Galajinsky, E.Latini, 2005;
N.Wyllard, 2000;  A.Galajinsky, O.Lechtenfeld, K.Polovnikov, 2006, 2008;

SF, E.Ivanov, O.Lechtenfeld, 2009, 2020;  S.Krivonos, O.Lechtenfeld, 2011, 2020;

SF, E.Ivanov, 2016; SF, E.Ivanov, O.Lechtenfeld, S.Sidorov, 2018;

S.Krivonos, O.Lechtenfeld, A.Sutulin, 2018, 2019, 2020;

S.Krivonos, O.Lechtenfeld, A.Provorov, A.Sutulin, 2018;  G.Antoniou, M.Feigin, 2019]
and the review [SF, E.Ivanov, O.Lechtenfeld, 2012]).

Supersymmetric generalizations of the hyperbolic and trigonometric Calogero-Sutherland
systems have been studied in a very limited number of works (see, for example,

[B.Sriram Shastry, B.Sutherland, 1993; L.Brink, A.Turbiner, N.Wyllard, 1998;

A.Bordner, N.Manton, R.Sasaki, 2000; M.Ioffe, A.Neelov, 2000;

P.Desrosiers, L.Lapointe, P.Mathieu, 2001; A.Sergeev, 2002,

A.Sergeev, A.Veselov, 2004, 2017; S.Krivonos, O.Lechtenfeld, A.Sutulin, 2018, 2019, 2020;
S.Krivonos, O.Lechtenfeld, A.Provorov, A.Sutulin, 2018; G.Antoniou, M.Feigin, 2019;
S.Krivonos, O.Lechtenfeld, A.Sutulin, 2019, 2020]).



Supersymmetrization of the Calogero-Sutherland model implies the expansion of its phase
space due to an additional set of odd (fermionic) variables.

In the standard scheme, the A/-supersymmetric extension of the n-particle
Calogero-Sutherland system is achieved by introducing A'n additional fermions.

However, beyond N'= 2, serious difficulties arise in such extensions of n-particle models
(see, e.g., [N.Wyllard, 2000; A.Galajinsky, O.Lechtenfeld, K.Polovnikov, 2006, 2008;
G.Antoniou, M.Feigin, 2019]).

A different approach was put forward in [SF, E.Ivanov, O.Lechtenfeld, 2009|, where
N=1,2, 4 supersymmetric extensions of the rational Calogero model were derived by a
gauging procedure [F.Delduc, E.Ivanov, 2006, 2007| applied to matrix superfield systems.
Gauging formulation of pure bosonic Calogero-like model was considered in
[A.Polychronakos, 1991; A.Gorsky, N.Nekrasov, 1994].

Such a gauging superfield approach was applied for obtaining new superconformal
Calogero-Moser systems with deformed supersymmetry and intrinsic mass parameter
[SF, E.Ivanov, O.Lechtenfeld, S.Sidorov, 2018].

A characteristic feature of the gauging approach is the presence of extra fermionic fields (as
compared to a minimal extension) and, in the N'=4 case, of bosonic semi-dynamical
spinning variables.

Within the Hamiltonian formalism, such type of matrix systems with an extended sets of
fermionic fields was further used in [S.Krivonos, O.Lechtenfeld, A.Sutulin, 2018, 2019, 2020]
for deriving supersymmetric Calogero systems.



In this talk we will consider the using of the gauging procedure in superfield matrix systems
to obtain supersymmetric extensions of the hyperbolic A,_; Calogero-Sutherland model,
up to the N'=4 case.

]

]

Advantages of the gauging approach used:
Starting from superfield model guarantees the presence of supersymmetry at all stages
(if the performed procedures are supersymmetric).

Since the bosonic limit describes the standard hyperbolic Calogero-Sutherland system,
the superfield system is automatically a supersymmetrization of the required system.

@ At all steps we have physically equivalent systems.

@ Generators of nonlinear (complex) supersymmetry transformations are obtained from

generators of standard linear transformations as a result of gauge fixings.

New properties of the gauging models:

The models have semi-dynamical degrees of freedom. In the A'=2 case, they are pure
gauge ones. But in the A'=4 case, some of them are dynamical and describe the
spinning degrees of freedom.

Since our initial models are superfield (nxn)-matrix models, the number of fermionic
degrees of freedom is proportional to n2, in contrast to the more standard models with
~ n fermions.

It is possible that such an extension of the odd sector is necessary for obtaining
supersymmetric generalization in the N> 4 cases.



Hyperbolic Calogero-Sutherland model by gauging

Let us consider the formulation of the n-particle hyperbolic Calogero-Sutherland model as
the U(n)-gauging Hermitian matrix system.

The matrix model we will deal with is underlaid by the positive definite Hermitian
N X n-matrix field

X(t) == [ XaP (V)| , (Xa)* = Xp?, detX #0, ab=1,...,n,
and the complex U(n)-spinor field
Z(t) = za®)ll, 2% =(Za)".
It also involves n? gauge fields
AQ) = AL (A”)" = Ap?.

The gauge-invariant action has the following form

S = /dt E Tr(X*lvx X*lvx) +i§ (sz —sz) +CTrA} ,

where the covariant derivatives are
VX =X +i[AX], VZ =7 +iAZ, VZ=27-iZA.
The last Fayet-Iliopoulos term includes only U(1) gauge field, ¢ being a real constant.



The action is invariant with respect to the local U(n) transformations, g(7) € U(n),
X — gxgt, Z—>9Z, Z— 29", A — gAgt +iggt.
Using these gauge transformations we can impose the gauge-fixing
=0, a#£b = X" =xada",
Z% =127,.

As a result, in this gauge the final gauge-fixed action becomes

XaXa XaXp C
2/ [ (Xa)? Z(xa—xtJ }

Introducing the variables ga as
Xa = exp(da)
we cast the action in the form

1 - c2
S D DL My pu— —
2/ [ T Y ginn? —qaqu}

which is just the standard action of the hyperbolic Calogero-Sutherland system of the
An_1-root type.




N=2 and N'=4 superfield models
N=2 N=4
N=2s-space: (t,6,0), = (6)* N=4s-space: (t,6',6;), 0, = (6)*,i=1,2
(t,0), (tr,0), N'=4 harmonic s-space: (t,Qi,Q_iY uii)
0% = 0'uF 0+ = éiuii sutiy =1

N'=2 chiral s-spaces:

N=2 invariant integration measure:
= dtd?0

N'=2 covariant derivatives:

D=8y —i60,

tLr=t+i00

D= —0g + 100,

Harmonic analytic s- spa.ce (¢, u) = (ta, 01,01, j[)
=t+i(6t6— +6- 9*)

N=4 invariant integration measures:
pn = dudtd?0,  p$?) = dudtado+ddt

N=4 covariant derivatives:

Df=—, —:—i—Zié—atA
aefa g+

Dt = D™= — —2i07 8,
90—’ a0+

)
++ + 5+ + Nt
2i0%0 0 — +0
=0"" 42 O, + é)quJr o




Superfield contents

We gauge the action of n? superfields forming Hermitian n x n matrix X = || Xa

°Il,

a=1,...,n, and describing n multiplets (1, N,N — 1).
We use also n superfields forming SU(n) spinor ® = ||®a|| and describing

n semi-dynamical multiplets (A, A/, 0).

N=2

N=4

N'=2 prepotential VaP(t,0,0),V = V1
defines covariant derivatives
DX =DX +e 2V (De?V) X
DX = DX — X eV (De ?Y)

Hermitian n x n matrix AN'=2 superfield
XaP(t, 0,0), (X)F =X

even U(n)-spinor superfield Za(t., 6)

and its conjugate Z2(tr, ) are
commuting (anti)chiral N'=2 superfields
satisfying

DZ,=0, DZ2=0

N'=4 connection VHaP(¢,u), VIt =V++
defines harmonic covariant derivatives
D+ = D+ 4Vt
and all other connections

Hermitian n x n matrix N'=4 superfield
XaP(t,60F,60%,u), X=X

subject to the constraints DT+ X =0,

DD~ X =DtD-X = (DD~ +DTD )X =0

even U(n)-spinor superfield Z; (¢, u)
and its conjugate Z+2(¢,u) are
commuting analytic N'=4 superfields
satisfying the constraints
Dttt =0, DTZ+t=0,DtZ2+t=0



Superfield actions

N-supersymmetric and U(n) gauge invariant action
S =Sx + Swz + Sk -

is the sum of the action Sy for dynamical supermuptiplet X, Wess-Zumuno term Sy for
semi-dynamical supermultiplet Z and Fayet-Iliopoulos term Sg; for gauge supermultiplet V.

N=2 N=4
Sy = E/uTr (x*ﬁxx*lpx) S = E/MH Tr(lnx)
2 2
L[ sev 1/,6-23
SWZ:_E/NzeZ z SWZ:_E/UA Zt+ z+
S = c/yTrV Se = —g plA T (v

C is a real constant.



The action is invariant with respect to the local U(n) transformations:

N=2 N=4
X/ =erxe i, 367 = ke
2 =dr\z, Z = Ze A ZH =drz+, ZH — Zt+eix
e2v1 :ep'\ ezve—iA’ V‘H":eiAV‘*"*'e_i)‘-i-ié)‘(D‘*"*'e_i)‘)
At,0) eu(n), A(tr,0) = (W) € u(n) M¢uE) eu(n), A=2x

We can choose Wess-Zumino gauge

N=2 | N=4

Vab = GQ_Aab(t) V++ab = 2| 6+0_+ Aab(tA)
Physical fields are presented in the expansions

N=2 | N=4

Xab = Xab + GWaP — GUab ... | XaP = Xab + g WibuE 4+ G-WibuE 4+

where Wa°, WP = (Wp2)* — odd fields | where WigP, WizP = (W;,2)* — odd fields
Za = Za +..., 22 =78 ... Zf=2Zlut+.., Zra=Zput +.., Z2=




After putting the Wess-Zumino gauge and elimination of auxiliary fields, we obtain the

on-shell component action Smarix = [ Ot Lmarix with the Lagrangian

Lmatrix = Lb + Lof + Lat,

_ 1 —1 —1 e K 5 ok
b = 3 Tr(x VX X vx+2cA) + 3 (zkvz —VZZ )
Ly = % Tr(x*lﬁ:kx*lvwk —x*lv@kx*lwk)
Le = S1r((x—twi x—10} {x—twk x -1
A4f - 8 r{ ) I}{ ) k} 5

where the quantity C is a real constant and the covariant derivatives are defined by
VX =X +i[AX] and VWK =k {i[A K], vzk =27k 4iAzZK and c.c.

Properties:

N=2 N=4

index k takes only one value k =1 index k is SU(2)-index and
runs over two values k = 1,2

Ly is exactly the Lagrangian of Ly describes the SU(2) spin hyperbolic
the hyperbolic Calogero-Sutherland system | Calogero-Sutherland system (will see below)

4 4
Smatrix describes N'=2 supersymmetric Shatrix describes N'=4 supersym. SU(2) spin

hyperbolic Calogero-Sutherland system hyperbolic Calogero-Sutherland system



Hamiltonian formulation
The matrix system is described by total Hamiltonian
Hmarix = H + Tr(AF) )
where the first term is the canonical Hamiltonian
_ 1 1 1y =131 Iy —1uk ¥ -1
H =3 Tr(xpxp) gTr({x Wi X1} (X~ wk X \uk})
and the second term Tr(AF) uses the quantities
. = 1 = 1 _
Fa® :=i[P,X]aP +ZXZP — > XUk X710 3aP — 5 {WEX =1 U X 11aP — c6a®.

The variables AaP play the role of the Lagrange multipliers for the constraints

F® ~0.

Due to the 2-nd class constraints also present here, the nonvanishing Dirac brackets take the
form

{Xa®, P91 = 8967, {zi,2Pyp = —isbsl , WP Wy 9p = —iXa9XcP4L .
But there are also the nonvanishing Dirac brackets
{Pa®,Pc9tp ~ (XTIWKX 71, ).9% 2P #0,
(kP Py ~ S5 (XTWR)P #£0, (W, PetYp ~ S5 (XTTW)P #£0.



Partial gauge-fixing of the matrix system
The constraints Fa? = (Fp2)* form the u(n) algebra with respect to the Dirac brackets,
{Fa®, Fe'}p = —idaFc® +16c"Fa?
are the 1-st class ones and generate local U(n) transformations
6Xa® = —i[o, X]a°, 6Pa° = —i[a, Pla®, 6ZX = —i(az¥)a,sWkP = —ia, WK]LP,
where aa?(7) = (ap?(7))* are the local parameters.

Below we apply the expansions Xa? = XadaP + xa?, PaP = pada® + pa?, where xa? and
PaP represent the off-diagonal matrix quantities.

The gauges Xa? =0 at a#b fix the local transformations with the parameters aa?(7), a#b
generated by the off-diagonal constraints FaP =0, a#b. This gauge fixing takes the form

Xab ~0
In addition, using the constraints FaP? ~0, a#b, we express the momenta pa° through the
remaining phase variables:
oo — _ 12 |10t x0) (9K, BiJa?
P = —
Xa — Xp 2(Xa — Xp)+/XaXp
where we use the odd matrix variables defined by

Yk b - . Uy aP
, Dol = () = )
v/ XaXp v/ XaXp

k b
PTL" =




Final physical systems
For obtaining standard Hamiltonian ~ >_,(pa)? we introduce the phase variables
OJa =10gXa, Pa=XaPa-

As a result, after the partial gauge fixing, phase spaces of the considered systems are defined
by

e 2n even real variables Qa, Pa, @ N'n? odd complex variables @5,

e A'n/2 even complex variables Z},  which nonvanishing Dirac brackets are

7 — - — ; o
{da, Pb}p = dab {Zallvzkb}D = = 026{( ) {‘blabv “bkcd}D == 025?0{( :
In these variables the Hamiltonians take the form
1 1 RaPRy? 1 1 Snonls 5
= = - _ — = , b, , b
Ho= 33 papa + £ > = (25 = Tr({0, ®}{oF By})
a a#b sinh —

where Ra" := Z;Zf — cosh (w) {oF, B, 1aP.

The residual 1-st class constraints are n diagonal constraints

Fa:=Fa® =Ra® —c = ZXZ2 — {oX, ® }a® —c ~ 0 no summation over a),
a <k

which form an abelian algebra with respect to the Dirac brackets {Fa, Fb}/D =0
and generate the [U(1)]" gauge transformations with the local parameters ~ya(t):

zk — drazk KL — dragpk, beim no sums over a,b).
a a o’



Properties of the AV-supersymmetric systems obtained

® Since the starting systems are A/-supersymmetric matrix models, the resulting systems
are described by A'n? fermions, in contrast to the standard supersymmetric
Calogero-like system |D.Freedman, P.Mende, 1990| which involves only A'n fermions.

® N -supersymmetric systems involve A'n/2 semi-dynamical even variables Z.
In N'=2 case, there are n 1-st class constraints which allow us to gauging all these
variables Z,.

@ N=4 system uses SU(2) spinors Z} and in bosonic limit its Hamiltonian has the form

Hpose = Z PaPa + Z L&j)qb )
8 27 sinh? ( > )

where the nxn matrix quantities Sai¥ := Zi&‘Za“< at all values a form the u(2) algebras
with respect to the Dirac brackets:

{Sai*, Sn;'}o = —i 8ap (8Sai' — 8/Sa/*) .

Thus, the Hamiltonian is same as the Hamiltonian of the U(2)-spin hyperbolic
Calogero-Sutherland A,_3-root system [J.Gibbons, T.Hermsen, 1984; S.Wojciechowski,
1985]. Hence we built A’'=4 supersymmetric SU(2) spin hyperbolic C-S system.



Supersymmetry generators
Since the systems considered here are obtained from N -superfield action, they possess
N-supersymmetry invariance.

Putting the partial gauge fixing conditions in expressions of the Noether charges, we obtain
supersymmetry generators

: i i RaP®!,2 i K = 1 bai
Q' = ) padla® - EZW + 52[4’ , Pila’®'p?,
a azb Sinh T) a,b

- - i RaP®;p2 i s e
Qi = Zpa¢iaa - EziaQaqub — EZ[q)k,q)k]abq)iba
a a#b Sinh <T) a,b

where RaP = Z;‘Zf — cosh (@) {(IDK7 <T>k}ab.

® In N'=2 case, index i takes only one value i = 1 and last terms are identically zero.

9 Second terms in the supercharges describing the Calogero-like interaction are zero
when the off-diagonal matrix fermions ®,°, 4P, a # b vanish.

The matrix nature of the original system is important for the given type of systems.



Supercharges Q', Q; and Hamiltonian H form the AN'=2 or N'=4 superalgebra
with respect to the Dirac brackets on the shell of the 1-st class constraints Fa ~ 0:

. ’ i oli bpk) a
{leQk}D = _Iizaib(':a—Fb)7
4 : Qa — 0p
azb sinh? (aT)
o= _ ) . i ¢i bi’kba
{Q.QJp = _ZIH(SL_“;SimZ(qaqu)(Fa_Fb)’

. , bgi a
{leH}D = _égm(Fa—Fb>~

These generators H, Q, @ are gauge invariant: {Q', Fa};D ={Q, Fa};D ={H, Fa}f) =0.

Remark:

As already noted, in the N'=2 case it is possible to gauge-eliminate all semi-dynamical
variables Z5. As a result of this procedure, we reproduce supercharges

[S.Krivonos, O.Lechtenfeld, A.Provorov, A.Sutulin, 2018, 2020]

that either have irrational dependence on odd variables

or use odd quantities with nontrivial properties with respect to complex conjugation.



Lax representation

Classical dynamics of the system considered here is defined by the total Hamiltonian
Hr = H + >, \aFa,

where Aa(t) are the Lagrange multipliers for the 1-st class constraints Fa.

A time derivative of an arbitrary phase variable B(t) takes the form B = {B, HT},D.

This evolution can be written using the nxn matrix Lax pair
RaP®
2sinh (C]a EL )
2

cosh (C]a ; qb)

Evolution of (q, p)-variables is represented by the matrix commutator

La® = pada® — i(1-62)

1 = 1 _
Ma® = 2 {0, &Ja%a" + 5 (1-42) Ra® + {®*, Bk }a® | + Xada”.

4

La® (Fa — Fp)

[a® = —i[M,LIa"—i(l“sg)ctsinhz(qa%)

where Fa = 0 are the constraints.



The equations of motion of odd matrix variables ¢iab, ®;aP are also represented as
commutators o ) . _
¢Iab = _i[Ma‘bl]ab, q’iab = —i[M7¢i]ab~

The Lax equations yield the conserved charges:

the trace of any polynomial function
‘F(L7 ¢7 ¢)

of the matrix variables LaP, d>iab, ®;aP
is conserved quantity on the shell of constraints the 1-st class constraints Fa ~ O:

J=Tr(F), JF=0.

In particular, supercharges and Hamiltonian have the same form
) ) i o _ _ i _ _
Q =Tr(@'L) + 5 Tr([0%,&do'), Q= Tr(@L ) - S Tr(&[e, &l

H= %Tr(Lz) - %Tr({‘bi,&’i}{q’k’ék}) :



The equations of motion of the commuting spinning variables Z;, Zia are represented as
. ) s RaP
Zi=—iY ALZl, Z2=iYZbA2, where AP = (1 - 52) T b,

b b 4 sinh? (L qb)
2

We obtain that the U(2) charges Si' := ZZEZ; are conserved: S, = 0.

a

Moreover, Z.i‘zz =0, Zjazz =0, at all a are N'=4 supersymmetry invariant and can be used
as reduction conditions. After reduction our A'=4 system involves only half of initial

1= - = - ’ . .
semi-dynamical variables za := Zé’l, 72 = Zja‘:l, {za,2°}p = —i68 and describes N'=4
spinless hyperbolic Calogero-Sutherland system:

) ) i b i i _ ) _
Q' =Y patlat — LY TR S ok &ttt O,
a a#b sinh (T) a,b
_1! 1 Tt 1 i Barok &
M= 2 pabatg E#jb o () 8 Tr({0, 3ok, 83),

where TaP := zaZP — cosh (@) {¢k, <T>k}ab and with the 1-st class constraints
Fa:=Ta? —Cc=12a7% — {®X, & }a® —cx 0 (no summation over a).
Gauge-elimination of all semi-dynamical variables z5 in the last system yields

the N'=4 supercharges presented in |S.Krivonos, O.Lechtenfeld, 2020]
with nontrivial properties of odd variables with respect to complex conjugation.



Quantum generators

Supersymmetry quantum generators are obtained by using the Weyl ordering of
supersymmetry classical ones. Let us present the N'=2 case.

Quantum N'=2 supersymmetrlc hyperbollc Calogero-Sutherland system is described by the
operators Qa, Pa, Za, 72 &,P, ®,P, with canonical (anti)commutation relations:

[0a,Pbl =10, [ZaZ°]=0, {Ba" B} =574
Below we use the odd operators @a, ¢a? and c.c. which are defined by the expansions
‘bab = 4Pa(sab + ¢ab s (iab = 4)aaéab + ‘Z)ab ) {4P37 Lﬁb} = éab ) {¢ab7 ‘Z)Cd} = 5g 62 .

Quantum supercharges have the form

Q = Zpaipa——Zcoth(qa_qb)(¢a_¢b)_%Z Ra®¢p?

ab azb sinh (Qa 5 qb) 7

— i £ b a
& = Lppt g oom (BR) (@) 5 3B
a;ﬁbSiﬂh( 2 )
1 1 Ra°Rp2 1 - - n(4n? —1)
H = 5 ;papa-i‘ g gm = éTf({‘P,@}{@,‘P}) + T
2

where RaP := ZaZP — cosh (Qa ; qb) {®, ‘i)}ab



Physical states |W) obey the conditions Fa|W) =0 where the operators
Fa:=Ra® —Cc =222 - {®,®}.% ¢ (no summation over a)
are quantum counterparts of the 1-st class constraints.

In the space of physical states |W) the operators Q, Q, H form the N'=2 superalgebra.

In contrast to the classical supercharges, the quantum supercharges have the following
special property: the first two terms in them

Q= Z Paya — jz Z coth (@) (tpa = 4Pb> g and c.c.
a atb

do not contain off-diagonal fermions ¢a®, $a? and themselves form the A'=2 superalgebra

{Qyé}ZZHv {Q,Q}:{Q,Q}:O,

where the Hamiltonian of such a “truncated” subsystem is given by the following expression:

1 1 Pa— Pp)(Pa—¥p (n% — 1)
[H—E;papa+§§( :inh2 ()qg—aqb) )+” n24 ’
2

Such system is in fact the N'=2 special extension of the hyperbolic Calogero-Sutherland
system with a fixed value of the coupling constant.

In contrast to the A'=2 case, the separation of the invariant sector with only diagonal odd
variables does not work in the N'=4 quantum case.



Conclusion

This talk presented new models of multi-particle supersymmetric mechanics, which are
N=2 and N'=4 supersymmetric generalizations of the Calogero-Sutherland hyperbolic
system of A,_; root type.

]

Important element of our construction was superfield matrix systems with U(n) gauge
symmetry.

Resulting n-particle systems possess A'n? real physical fermions.

In the N'=4 case, the system involves additional semi-dynamical bosonic spin variables
and so describes a A'=4 supersymmetric generalization of the U(2)-spin
Calogero-Sutherland hyperbolic system.

It is possible to impose the reduction conditions that are N'=4 supersymmetry
invariant and eliminate half of the spinning variables. Such a reduced system is in fact
the N'=4 generalization of the spinless hyperbolic Calogero-Sutherland system.

Explicit expressions are obtained for the classical and quantum supersymmetry
generators, corresponding to the hyperbolic Calogero-Sutherland system.

The Lax representation of the equations of motion for the system under consideration
is presented and the set of conserved quantities is found.
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