Thermal Large N Holography

Quarks 2020 “Integrability, Holography, Higher-Spin Gravity and Strings” A.D. Sakharov's centennial 2021



Gravity, especially quantum gravity,
Is entangled with thermodynamics.



Thermal large /N holography and tidal excitation

* |s exotic, very stringy or higher spin symmetric
gravity still recognisable as gravity? Are there
universal features?
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Fig. 4: Null geodesics in star with pp = 10 in AdS, projected onto a constant ¢ slice and the t — r
plane, for varying angular momentum to energy ratio (E' = 10 and J =0,1,...,10). On the

Hubeny, Liu and Rangamani: hep-th/0610041
“Bulk-cone singularities & signatures of horizon formation in AdS/CFT”

> Are there traces of bulk-cone singularities in exotic
gravity? ‘ A

10f

> What breaks AdS periodicity? §

> What is the boundary signature of strong tidal LN
effects in the bulk? R 3 T
Dodelson and Oogurii: 2010.09734

“Singularities of thermal correlators at strong coupling”

.




Related recent developments

* Dual of free super-Yang-Mills. Gaberdiel and Gopakumar 2104.08263, 2105.10496
 Summing over Geometries in String Theory Eberhardt 2102.12355

 The Harder They Fall, the Bigger They Become: Tidal Trapping of Strings by Microstate Geometries Martinec and Warner 2009.07847

» Singularities of thermal correlators at strong coupling Dodelson and Oogurii 2010.09734
* Proper time to the black hole singularity from thermal one-point functions Grinberg and Maldacena 2011.01004
« Correlation functions in finite temperature CFT and black hole singularities Rodriguez-Gomez and Russo 2102.11891

 Thermalization in Large-N CFTs Karlsson, Parnachev and Tadi¢ 2102.04953



Recent interest in thermal CFTs

* There are limits to the convergence of the OPE due to topology.
* There are new simple but non-trivial observables:
* One-point functions are non-zero.

e Different operators mix.



Bulk physics from boundary physics

Witten 1998: Hawking-Page black hole thermodynamics transition in asymptotic AdS — deconfinement transition in
boundary large N gauge theory.

1999: Boundary "free deconfinement” — to black hole thermodynamic phase transition in Higher Spin symmetric
tensionless string theory?

Boundary correlators probe the bulk to reveal "evanescent modes” — whispering gallery modes — confined to the
region inside the "photon sphere” around black holes. Amado, Sundborg, Thorlacius, Wintergerst:1612.03009, 1712.06963

Now: Tidal effects probed In the boundary. Engelsdy, Sundborg in progress



Bulk tidal excitation from thermal
mixing In the boundary



Boundary correlators

Encoding a bulk thermal
equilibrium/black hole?

* The typical thermal equilibrium geometry in
asymptotically AdS spaces is believed to be a
black hole or something similar.

» The boundary to global AdSq.1 is S¢-1 x R1. ZIp] ~ DpDoteSlov'h

;1 d—1 1
* The boundary field theory language for thermal pomsT e

equilibrium is a compact imaginary time circle. We
get Euclidean S9-1 x ST,



Singlet models

Bulk gravity as far from
supergravity as possible

¢ — J KT \/gg””aﬂgﬂaygo * Free, integrable boundary theories are as far from

strongly coupled gauge theory as possible.
Sd—IXSl
. IS ensured by the

O0=qpip=J° T, =J, Gauss law - singlet - constraint, the only remnant
of gauge symmetry.

o= a4 0,...0,00, ...0,¢ OHJS =0

e ,E) e e S e Conjuctured duals include

* higher spin theory

* tensionless string theory



Singlet models

Representing the Gauss law
constraint

* Free, integrable boundary theories are as far from
strongly coupled gauge theory as possible.

« Large N counting and spectrum is
, the only remnant
of gauge symmetry, which is encoded in the path

integral as topologically non-trivial A,
e Conjectured duals include
* higher spin theory, and

* tensionless string theory.
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Thermal equilibrium

Large /N saddle point

ZIp]l = JQZAM?ZquZWe_S[A“*“”T;ﬁ]

« The A, integral can be written in terms of an 1 J
integral over its NV eigenvalues /.. N!
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ZIp] = ﬁj(Hdﬂ) exp { —SenlBs 41 }

« Finding the large N saddle point is the dynamical
principle.

1 0 — 5Seff[ﬂ; /1]]

. N relates to Newton’s constant.

« Given the prominence of large N arguments in
holography, we can expect to reproduce
significant aspects of bulk gravity.
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Saddle point densities

. o . 5Seff[ﬂ; /1]]
 The saddle point densities vary with temperature. 0=—2
* Qualitative changes in the equilibrium density Matrix model Vector model
leads to phase transitions. *
P(A) P

* The extreme high temperature limit typically
simplifies the saddle point eigenvalue density to a
delta function.

-T 0 T o 0 n

e High T Critical T  ===———=low T m——\/ery low T



Correlators

* Correlators probe thermal equilibrium physics.
* Phase transitions affect correlators.

* The scale dependence of correlators probe the
radial direction in the bulk.



Correlators

* Correlators probe thermal equilibrium physics.
* Phase transitions affect correlators.

* The scale dependence of correlators probe the
radial direction in the bulk.

* The momentum space two-point functions of
singlet scalars can be obtained through

constituents: fundamental and anti-fundamentals.

* Jo construct the propagator of the composite

singlet scalar O = ¢ "¢, we sew two position
space propagators together.

o P
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Correlators

* Correlators probe thermal equilibrium physics.
* Phase transitions affect correlators.

* The scale dependence of correlators probe the
radial direction in the bulk.

* The momentum space two-point functions of
singlet scalars can be obtained through

constituents: fundamental and anti-fundamentals.

* Jo construct the propagator of the composite

singlet scalar O = ¢ "¢, we sew two position
space propagators together.

* The scale is set by /.

o P
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The energy density

* The energy density is dual to the bulk graviton’s
time-time component.

T//w — a{ﬂwTay}qp o gﬂyaaquaaw + 2§(G/,ty + g/,u/ o V/,t Vy) | % |2

* FEuclidean time is compact: this graviton T 1 T T 3 T
component measures fluctuations in this radius. Too = 9o 009 = =\ (9e0o ) + ¢ (0e09) + Py
i=1

* |tis analogous to a "radion” scalar perturbing the
circumference of a spatial dimension. It perturbs
the compact imaginary time circumference
related to temperature.

e A *temporon”?

- 1 3
« | will just call the operator 7. T ~ dyp oy — S ((000060T)<0 + 0" (3,000) + 2 01-90701@0)
=1



More two-point functions

* The two-point functions of the singlet scalars are

given by a sum over eigenvalue correlators. p—i(n=m));

(cosh(z + fn) — cos B)(cosh(z + pfm) — cos 0)

N o0
(0(z,000,0) =), )

i=1 nm=—o00
* In the extreme high temperature limit, the eigenvalue
distribution localises to A = (). The characteristic ) : 1 2
_ . 1 > 1 T 5
scale is # — 0, so we focus on short distances. ~ — 4 =G
ﬁ <O(T, X)O(O,O)> 4 (m;m (T +,3WL)2 +X2> 2)62,52 <COS % _ cosh % 2 00(7, X)
B B

* The correlator simplifies considerably.



More two-point functions

* The two-point functions of the singlet scalars are

given by a sum over eigenvalue correlators. p—i(n=m));

(cosh(z + fn) — cos B)(cosh(z + fm) — cos 0)

N o0
(0(z,0000) =), )

=1 nm=—o0

* In the extreme high temperature limit, the eigenvalue
distribution localises to A = (. The characteristic

. ’ : sinh? 22
scale is # — (), so we focus on short distances. oL : - d =
p (O(7,x)0(0,0)) 1 (m;m (z + Am) + x2> 222 <cos e o 5 = Gpo(7, %)
p B

* The correlator simplifies considerably.
* |n this limit the higher dimension operators can be (T(z,x)0(0,0)) = lim D({W) (O(1,x)0(0,0)) = Grp(1,x)

obtained from point-splitting constituents. ey
* |n practice we apply special differential operators to (T(z,x)T(0,0)) = lim D({W) (O(7,x)T(0,0)) = G(1,x)

u—v

the basic singlet scalar-scalar correlator.



Static correlators

* The full correlator contains all leading information
about thermal equilibrium quantum gravity at

Gy — 0. Simplify even more:

e Static thermal correlators represent how static
perturbations respond to the presence of black
holes/thermal equilibrium.

« We consider scalar perturbations O, _,(x) and
temperature perturbations 7T, _,(x).

p
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Bo Sundborg


The mixed correlator

p
(Ty(x)0y(0) ) ~ J dr (T(z,x)0(0,0))
O —
* Scalar and temperature perturbations mix. ) f cosh &= |
ﬂ p 7 o 2 27X
= — 5 p|8rx+ p 5 — (327n°x~ + f)coth =
6x443 sinh? %x sinh %x P
 The characteristic scale is x ~ [. LA /

 Fourier transform to k space.
f(kB)

1
. Gro(@ = 0.k) = = — f(kp)
ﬁ 100 -
50 ©
e The mixed correlator is constant for kff < 1. |

« |t falls as an inverse power law for k3 > 1. 5

N\ kS
100
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Tidal excitation

Centrel

* Mixing of otherwise independent fields is often
induced by non-trivial backgrounds. Here, a
compact object seems to induce conversion
between scalars and gravitons.

* In the bulk, a constant mixed correlator at kff << 1

means constant mixing of temperature and scalar ! (w )
fluctuations in the deep interior.

100 -
 The mixing grows as ,B_z with temperature. 50 -
 For large kf# > 1, the fall-off is the expected 10 -

behaviour in thermal AdS. Only at large boundary 5
distances can we detect the presence of a black -
hole.

1:
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Tidal excitation

Centrel

* Mixing of otherwise independent fields is often
induced by non-trivial backgrounds. Here, a
compact object seems to induce conversion
between scalars and gravitons.

f(kp)
* Technically, the mixing arises because the same |
constituent fields build up both Lol
T o T 50
O=¢'p and T = }gr‘}l?(u,v){w @} |
10 3
5¢
 This is leads to relations between large N theory 1:

operators, allowing for mixing. 0.5

0.01 0.10 100



Conclusions and Outlook

v Mixing of related large N operators is induced by a thermal
equilibrium background.

v For extremely high temperature the static effect is large,
especially for low boundary momentum/deep bulk interior.

v Correlators are consistent with a compact bulk object
emulating a black hole, even in toy models of higher spin
gravity or tensionless string theory.

v Strong gravity in the deep bulk appears to be vital for mixing.

v Mixing discloses relationships between different bulk fields, as
expected in string theory, and also in higher spin theory.

Exact correlator expressions are under way
for all temperatures and separations on the
sphere.

If these expressions can be processed, the
will yield full disclosure of the scattering by
quantum black hole like objects.

Tidal excitation of incident composite fields
IS likely to be substantial only in the
presence of strong gravity.

Then, mixing is an ideal probe of regions
inside the photon sphere, around the
horizon, and perhaps close to the resolved
singularity of quantum black holes.



