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Gravity, especially quantum gravity,  
is entangled with thermodynamics.



• Is exotic, very stringy or higher spin symmetric 
gravity still recognisable as gravity? Are there 
universal features?

Thermal large  holography and tidal excitationN



• Is exotic, very stringy or higher spin symmetric 
gravity still recognisable as gravity? Are there 
universal features?


‣ Are there traces of bulk-cone singularities in exotic 
gravity?


‣ What breaks AdS periodicity?


‣ What is the boundary signature of strong tidal 
effects in the bulk?

Thermal large  holography and tidal excitationN

Hubeny, Liu and Rangamani: hep-th/0610041 

“Bulk-cone singularities & signatures of horizon formation in AdS/CFT”

Dodelson and Oogurii:  2010.09734 

“Singularities of thermal correlators at strong coupling”



Related recent developments

• Dual of free super-Yang-Mills.


• Summing over Geometries in String Theory


• The Harder They Fall, the Bigger They Become: Tidal Trapping of Strings by Microstate Geometries


• Singularities of thermal correlators at strong coupling


• Proper time to the black hole singularity from thermal one-point functions


• Correlation functions in finite temperature CFT and black hole singularities


• Thermalization in Large-N CFTs

Gaberdiel and Gopakumar 2104.08263, 2105.10496

Eberhardt 2102.12355

Martinec and Warner 2009.07847

Dodelson and Oogurii  2010.09734

Grinberg and Maldacena 2011.01004

Karlsson, Parnachev and Tadić 2102.04953

Rodriguez-Gomez and Russo 2102.11891



Recent interest in thermal CFTs

• There are limits to the convergence of the OPE due to topology.


• There are new simple but non-trivial observables:


• One-point functions are non-zero.


• Different operators mix.



Bulk physics from boundary physics

• Witten 1998: Hawking-Page black hole thermodynamics transition in asymptotic AdS  deconfinement transition in 
boundary large  gauge theory.


• 1999: Boundary ”free deconfinement”  to black hole thermodynamic phase transition in Higher Spin symmetric 
tensionless string theory?


• Boundary correlators probe the bulk to reveal ”evanescent modes” – whispering gallery modes – confined to the 
region inside the ”photon sphere” around black holes.


• Now: Tidal effects probed in the boundary.

→
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Amado, Sundborg, Thorlacius, Wintergerst:1612.03009, 1712.06963 

Engelsöy, Sundborg in progress



Bulk tidal excitation from thermal 
mixing in the boundary



Encoding a bulk thermal 
equilibrium/black hole?

• The typical thermal equilibrium geometry in 
asymptotically AdS spaces is believed to be a 
black hole or something similar.


• The boundary to global AdSd+1 is Sd-1 ✕ R1.


• The boundary field theory language for thermal 
equilibrium is a compact imaginary time circle. We 
get Euclidean Sd-1 ✕ S1.

Boundary correlators

Z[β] ≈ ∫
φ on Sd−1×S1

𝒟φ𝒟φ†e−S[φ, φ†; β]



Bulk gravity as far from 
supergravity as possible

• Free, integrable boundary theories are as far from 
strongly coupled gauge theory as possible.


• Large  counting and spectrum is ensured by the 
Gauss law - singlet - constraint, the only remnant 
of gauge symmetry.


• Conjuctured duals include 


• higher spin theory 


• tensionless string theory

N

Singlet models

S = ∫
Sd−1×S1

ddx ggμν∂μφ†∂νφ

 O = φ†φ = J0

Js
μ1...μs

=
s

∑
k=0

ask ∂μ1
. . . ∂μk

φ†∂μk+1
. . . ∂μs

φ ∂μJs
μμ1...μs

= 0

Tμν = J2
μν



Representing the Gauss law 
constraint

• Free, integrable boundary theories are as far from 
strongly coupled gauge theory as possible.


• Large  counting and spectrum is ensured by 
Gauss law - singlet - constraint, the only remnant 
of gauge symmetry, which is encoded in the path 
integral as topologically non-trivial .


• Conjectured duals include 


• higher spin theory, and


• tensionless string theory.

N

A0

Singlet models

Z[β] = ∫
φ on Sd−1×S1

𝒟Aμ𝒟φ𝒟φ†e−S[Aμ, φ, φ†; β]

S = ∫
Sd−1×S1

ddx g (gμν(Dμφ)†Dνφ− (d − 2)2

4R2 φ†φ)



Large  saddle pointN

• The  integral can be written in terms of an 
integral over its  eigenvalues .


• Finding the large  saddle point is the dynamical 
principle.


•  relates to Newton’s constant.


• Given the prominence of large  arguments in 
holography, we can expect to reproduce 
significant aspects of bulk gravity.

A0
N λi

N

1
N

N

Thermal equilibrium

Z[β] =
1

N! ∫ (∏
i

dλi) exp ∑
i≠j

ln sin (
λi − λj

2 ) − ∑
i

Ss,β [λi]

Z[β] = ∫ 𝒟Aμ𝒟φ𝒟φ†e−S[Aμ, φ, φ†; β]

Z[β] =
1

N! ∫ (∏
i

dλi) exp {−Seff[β; λi]}

0 =
δSeff[β; λj]

δλi



• The saddle point densities vary with temperature.


• Qualitative changes in the equilibrium density 
leads to phase transitions.


• The extreme high temperature limit typically 
simplifies the saddle point eigenvalue density to a 
delta function.

Saddle point densities

High T Critical T Low T Very low T

Vector modelMatrix model

0 =
δSeff[β; λj]

δλi



• Correlators probe thermal equilibrium physics.


• Phase transitions affect correlators.


• The scale dependence of correlators probe the 
radial direction in the bulk.

Correlators



• Correlators probe thermal equilibrium physics.


• Phase transitions affect correlators.


• The scale dependence of correlators probe the 
radial direction in the bulk.


• The momentum space two-point functions of 
singlet scalars can be obtained through 
constituents: fundamental and anti-fundamentals.


• To construct the propagator of the composite 
singlet scalar , we sew two position 
space propagators together.

O = φ†φ

Correlators

Πab(τ, θ) =
N

∑
i=1

Ψa
i (Ψ

b
i )*e−iτ λi

β (
∞

∑
n=−∞

e−inλi

(cosh(τ + βn) − cos θ)σ )

Πab(n, l) =
N

∑
i=1

Ψa
i (Ψb

i )*

(ωn + λi

β )2 + E2
l

⟨O(τ, θ)O(0,0)⟩ = Πab(τ, θ)(Πba(τ, θ))*

⟨O(τ, θ)O(0,0)⟩ =
N

∑
i=1

∞

∑
n,m=−∞

e−i(n−m)λi

(cosh(τ + βn) − cos θ)(cosh(τ + βm) − cos θ)

O(τ, θ) : : O(0,0)φ†(τ, θ)
φ†(τ, θ)φ(τ, θ)
φ(τ, θ)



• Correlators probe thermal equilibrium physics.


• Phase transitions affect correlators.


• The scale dependence of correlators probe the 
radial direction in the bulk.


• The momentum space two-point functions of 
singlet scalars can be obtained through 
constituents: fundamental and anti-fundamentals.


• To construct the propagator of the composite 
singlet scalar , we sew two position 
space propagators together.


• The scale is set by .

O = φ†φ

β
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• The energy density is dual to the bulk graviton’s 
time-time component.


• Euclidean time is compact: this graviton 
component measures fluctuations in this radius.


• It is analogous to a ”radion” scalar perturbing the 
circumference of a spatial dimension. It perturbs 
the compact imaginary time circumference 
related to temperature.


• A “temporon”?


• I will just call the operator .T

The energy density

T00 ≃ ∂0φ†∂0φ −
1
3 ((∂0∂0φ†)φ + φ†(∂0∂0φ) +

3

∑
i=1

∂iφ†∂iφ)

T ≃ ∂0φ†∂0φ −
1
3 ((∂0∂0φ†)φ + φ†(∂0∂0φ) +

3

∑
i=1

∂iφ†∂iφ)

Tμν = ∂{μφ†∂ν}φ − gμν∂αφ†∂αφ + 2ξ(Gμν + gμν□ − ∇μ ∇ν) |φ |2



• The two-point functions of the singlet scalars are 
given by a sum over eigenvalue correlators.


• In the extreme high temperature limit, the eigenvalue 
distribution localises to  The characteristic 
scale is , so we focus on short distances.


• The correlator simplifies considerably.


λ = 0.
β → 0

More two-point functions

⟨O(τ, x)O(0,0)⟩ ≃
1
4 (

∞

∑
m=−∞

1
(τ + βm)2 + x2 )

2

=
π2

2x2β2

sinh2 2πx
β

(cos 2πτ
β − cosh 2πx

β )
2 ≡ GOO(τ, x)

⟨T(τ, x)O(0,0)⟩ ≡ lim
u→v

DT
(u,v) ⟨O(τ, x)O(0,0)⟩ ≡ GTO(τ, x)

⟨T(τ, x)T(0,0)⟩ ≡ lim
u→v

DT
(u,v) ⟨O(τ, x)T(0,0)⟩ ≡ GTT(τ, x)

⟨O(τ, θ)O(0,0)⟩ =
N

∑
i=1

∞

∑
n,m=−∞

e−i(n−m)λi

(cosh(τ + βn) − cos θ)(cosh(τ + βm) − cos θ)



• The two-point functions of the singlet scalars are 
given by a sum over eigenvalue correlators.


• In the extreme high temperature limit, the eigenvalue 
distribution localises to  The characteristic 
scale is , so we focus on short distances.


• The correlator simplifies considerably.


• In this limit the higher dimension operators can be 
obtained from point-splitting constituents.


• In practice we apply special differential operators to 
the basic singlet scalar-scalar correlator.

λ = 0.
β → 0

More two-point functions
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• The full correlator contains all leading information 
about thermal equilibrium quantum gravity at 

. Simplify even more:


• Static thermal correlators represent how static 
perturbations respond to the presence of black 
holes/thermal equilibrium.


• We consider scalar perturbations  and 
temperature perturbations .

GN → 0

Oω=0(x)
Tω=0(x)

Static correlators

⟨O0(x)O0(0)⟩ ∼ ∫
β

0
dτ ⟨O(τ, x)O(0,0)⟩

= −
π2

6x4β3 sinh2 2πx
β

β 8πx + β
cosh 6πx

β

sinh 2πx
β

− (32π2x2 + β2)coth 2πx
β

⟨T0(x)O0(0)⟩ ∼ ∫
β

0
dτ ⟨T(τ, x)O(0,0)⟩

=
8π2 coth 2πx

β

βx2
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• Scalar and temperature perturbations mix.


• The characteristic scale is .


• Fourier transform to  space.


• 


• The mixed correlator is constant for .


• It falls as an inverse power law for .

x ∼ β

k

GTO(ω = 0, k) = −
1
β2

f(kβ)

kβ ≪ 1

kβ ≫ 1

The mixed correlator

= −
π2

6x4β3 sinh2 2πx
β

β 8πx + β
cosh 6πx

β

sinh 2πx
β

− (32π2x2 + β2)coth 2πx
β

⟨T0(x)O0(0)⟩ ∼ ∫
β

0
dτ ⟨T(τ, x)O(0,0)⟩
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• Mixing of otherwise independent fields is often 
induced by non-trivial backgrounds. Here, a 
compact object seems to induce conversion 
between scalars and gravitons.


• In the bulk, a constant mixed correlator at  
means constant mixing of temperature and scalar 
fluctuations in the deep interior. 


• The mixing grows as  with temperature.


• For large , the fall-off is the expected 
behaviour in thermal AdS. Only at large boundary 
distances can we detect the presence of a black 
hole.

kβ ≪ 1

β−2

kβ ≫ 1

Tidal excitation
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• Mixing of otherwise independent fields is often 
induced by non-trivial backgrounds. Here, a 
compact object seems to induce conversion 
between scalars and gravitons.


• Technically, the mixing arises because the same 
constituent fields build up both 


•   and 


• This is leads to relations between large N theory 
operators, allowing for mixing.

O = φ†φ T = lim
u→v

DT
(u,v){φ†φ}

Tidal excitation
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Conclusions and Outlook

✓Mixing of related large N operators is induced by a thermal 
equilibrium background.


✓For extremely high temperature the static effect is large, 
especially for low boundary momentum/deep bulk interior.


✓Correlators are consistent with a compact bulk object 
emulating a black hole, even in toy models of higher spin 
gravity or tensionless string theory.


✓Strong gravity in the deep bulk appears to be vital for mixing.


✓Mixing discloses relationships between different bulk fields, as 
expected in string theory, and also in higher spin theory.

‣ Exact correlator expressions are under way 
for all temperatures and separations on the 
sphere.


‣ If these expressions can be processed, the 
will yield full disclosure of the scattering by 
quantum black hole like objects.


‣ Tidal excitation of incident composite fields 
is likely to be substantial only in the 
presence of strong gravity.


‣ Then, mixing is an ideal probe of regions 
inside the photon sphere, around the 
horizon, and perhaps close to the resolved 
singularity of quantum black holes.


