### Higher-spin BMS algebras

#### Xavier **BEKAERT**

Institut Denis Poisson (Tours)

#### 1st of June 2021 @ online workshop

"Integrability, Holography, Higher-Spin Gravity and Strings" dedicated to A.D. Sakharov's centennial (QUARKS 2020)

joint work with Blagoje Oblak (work in progress)

Motivations Goals Outline

#### Broad motivations

Despite the wide array of no-go theorems against interacting massless theories in Minkowski spacetime (of dimension 4 and higher),

- the cardinal importance of flat spacetime for physical applications
- and the old issue of string theory symmetries in the tensionless limit can be taken as broad motivation for studying higher-spin symmetries in flat spacetime.

### Higher-spin motivations

#### Two tantalising questions:

- What might be an analogue of the singleton in flat spacetime?
- O What might be higher-spin symmetry algebra in flat spacetime? \*

<sup>\*</sup>Open question for spacetime dimension 4 and higher, but known in dimension 3 (Afshar-Bagchi-Fareghbal-Grumiller-Rosseel, 2013; Gonzalez-Matulich-Pino-Troncoso, 2013; ...)

Motivations Goals Outline

### Tools

#### Two main tools available:

- BMS representation theory
  - BMS4: Seminal works
    - Sachs (1962)
    - Series of papers by McCarthy (1972-1975)
  - BMS<sub>3</sub>: Barnich & Oblak (2014-2015)
  - BMS<sub>>4</sub>: ?
- O BMS intrinsic geometry
  - Seminal (Penrose, 1965)
  - Many contributions (Ashtekar, ...)
  - Modern view as conformal Carroll (Duval-Gibbons-Horvathy, 2014)

Motivations Goals Outline

### Goals

#### Two main goals:

- O Discuss two BMS analogues of Rac (= scalar singleton) :
  - 1. Wick-rotated Rac
    - + looks natural and familiar
    - seems not unitarisable
    - is not faithful representation of BMS (nor Poincaré) only of Lorentz
  - 2. Sachs representation
    - qualitatively ≠ Rac (less degenerate)
    - + faithful and unitary representation of BMS
    - + corresponds to irrep of Poincaré (massless scalar, radiation solutions)

Motivations Goals Outline

### Goals

#### Two main goals:

- O Discuss two BMS analogues of Rac (= scalar singleton)
- Construct the corresponding higher-spin extension(s) of (extended) BMS algebra(s)
  - off-shell: ∃
    - Contains the higher-spin extension of Poincaré algebra (XB, 2010)
    - Make contact with BMS Killing tensors obtained from the asymptotic symmetries of free massless higher-spin fields (Campoleoni-Francia-Heissenberg, 2017-2020)

 $\mathsf{Linear\ structure} \Rightarrow \mathsf{Algebra\ structure}$ 

<u>on-shell</u>: Degenerate or ∄?

Motivations Goals Outline

## Outline

#### Introduction

- Motivations
- Goals
- Outline

#### 2 Carroll geometry

- Motivation: BMS as conformal Carroll
- Ambient geometry
- Carrollian structures

#### BMS as Conformal Carroll

- Conformal Carrollian structures and symmetries
- Wick-rotated Rac
- Sachs representation

### Conclusion

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

### Intrinsic and geometric view on BMS symmetries



Fig. 1 in [J.-P. Nicolas, arXiv:1508.02592 [hep-th]]

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Intrinsic view

Although BMS group is most often discussed from the point of view of asymptotic symmetries of a bulk spacetime, it can be formulated in an

- intrinsic (*i.e.* purely from the boundary) and
- geometric (*i.e.* global and coordinate-free) way.

This point of view on BMS group

- goes back to Penrose (1965)
- allows to interpret BMS group as a conformal extension of Carroll group (Duval-Gibbons-Horvathy, 2014)

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

# Ambient geometry

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Ambient structures

Ambient structure: The following geometrical structures are equivalent

- Nowhere vanishing vector field  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$  on a manifold  $\mathcal{M}$
- $\bullet$  Congruence of parametrised curves from  ${\mathbb R}$  to  ${\mathscr M}$
- Principal  $\mathbb R$ -bundle  $\mathscr M$  with fundamental vector field  $\xi$



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Ambient structures

Ambient structure: The following geometrical structures are equivalent

- Nowhere vanishing vector field  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$  on a manifold  $\mathcal{M}$
- $\bullet$  Congruence of parametrised curves from  ${\mathbb R}$  to  ${\mathscr M}$
- Principal  $\mathbb{R}$ -bundle  $\mathscr{M}$  with fundamental vector field  $\xi$
- The curves are the integral lines of the fundamental vector field; they are also the orbits of the  $\mathbb{R}$ -action on  $\mathcal{M}$ .
- $\bullet\,$  The space  $\bar{\mathcal{M}}\,$  of such orbits is the base manifold of the principal bundle

$$\overline{\mathcal{M}} = \mathcal{M} / \mathbb{R}$$

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Ambient structures

Ambient structure: The following geometrical structures are equivalent

- Nowhere vanishing vector field  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$  on a manifold  $\mathcal{M}$
- $\bullet$  Congruence of parametrised curves from  ${\mathbb R}$  to  ${\mathscr M}$
- Principal  $\mathbb{R}$ -bundle  $\mathscr{M}$  with fundamental vector field  $\xi$

**Local expression:** there exist a coordinate system  $(u, x^i)$  such that

- Fundamental vector field  $\xi = \frac{\partial}{\partial u}$
- Curves  $x^i = x_0^i$  parametrised by u
- $\mathbb{R}$ -action  $u \to u u_0$  ( $u_0 \in \mathbb{R}$ )
- Fibration  $\pi: \mathscr{M} \twoheadrightarrow \tilde{\mathscr{M}}: (u, x^i) \mapsto x^i$

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Ambient structures

Example 1: Möbius model (projective null cone)

- Past lightcone  $\mathcal{N}^- \subset \mathbb{R}^{d+1,1}$  of the origin of Minkowski spacetime
- Coordinates  $(u, \theta^i)$  on  $\mathscr{N}^- \cong \mathbb{R} \times S^d$
- Fundamental vector field  $\xi = \frac{\partial}{\partial u}$  is null
- Null rays generating the cone
- $\mathbb{R}$ -action  $u \to u u_0$   $(u_0 \in \mathbb{R})$
- Fibration  $\pi: \mathscr{N}^- \twoheadrightarrow S^d: (u, \theta^i) \mapsto \theta^i$



Cover of [B.-Oblak, arXiv:1610.08526 [hep-th]]

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Ambient structures

**Example 2:** Inversion  $x^{\mu} = \frac{x^{\mu}}{x^2} \Rightarrow \mathcal{N}^{\mp} \leftrightarrow \mathscr{I}^{\pm}$ 

- Future null infinity  $\mathscr{I}^+$  at the conformal boundary of compactified Minkowski spacetime
- Coordinates  $(u, \theta^i)$  on  $\mathscr{I}^+ \cong \mathbb{R} \times S^d$
- Etc (idem as  $\mathcal{N}^-$ ) …



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Projection on the base manifold

Consider a principal  $\mathbb{R}$ -bundle  $\pi : \mathscr{M} \twoheadrightarrow \widetilde{\mathscr{M}}$ with fundamental vector field  $\xi$ .

- Invariant vector field:  $X \in \mathfrak{X}(\mathscr{M})$  such that  $\mathcal{L}_{\xi}X = 0$
- **Projectable vector field:**  $X \in \mathfrak{X}(\mathcal{M})$  such that  $\mathcal{L}_{\xi}X = f \xi$  for some  $f \in C^{\infty}_{inv}(\mathcal{M})$
- Invariant metric tensor:  $\mathcal{L}_{\xi}\gamma_{\mu\nu} = 0$
- Projectable metric tensor:  $\mathcal{L}_{\xi}\gamma_{\mu\nu} = 0$  and  $\gamma_{\mu\nu}\xi^{\nu} = 0$

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

# Intrinsic view on Carroll geometry



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

# Carrollian structure

## Fundamental vector field & Carrollian metric

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Timelike metric structure

**Fundamental vector field:** Nowhere vanishing vector field on the spacetime manifold,  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ 

Provides a distinction between the type of vectors in Carroll geometry:

$$\begin{cases} V^{\mu} = f \xi^{\mu} & \text{with} \\ V^{\mu} \neq f \xi^{\mu} & \end{cases} \begin{cases} f \neq 0 & \text{Timelike (or Vertical)} \\ f > 0 & \text{Future-oriented} \\ \text{Spacelike} \end{cases}$$

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

### Timelike metric structure

**Fundamental vector field:** Nowhere vanishing vector field on the spacetime manifold,  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ 

 $\Rightarrow$  The integral lines of the fundamental vector field are the only admissible worldlines and they are vertical: all observers are at rest.

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Timelike metric structure

**Fundamental vector field:** Nowhere vanishing vector field on the spacetime manifold,  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ 

 $\Rightarrow$  The integral lines of the fundamental vector field are the only admissible worldlines and they are vertical: all observers are at rest. This is the origin of the nickname "Carroll" (Lévy-Leblond, 1965).



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

### Timelike metric structure

**Fundamental vector field:** Nowhere vanishing vector field on the spacetime manifold,  $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ 

An affine parameter u of this congruence of Carroll worldlines (i.e.  $\xi = \partial/\partial u$ ) is a Carroll time.



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Spacelike metric structure

**Carrollian metric:** Positive semi-definite metric  $\gamma$  on the spacetime  $\mathcal{M}$  whose kernel is spanned by the fundamental vector field

 $\begin{cases} \gamma_{\mu\nu}V^{\mu}W^{\nu} \ge 0\\ \gamma_{\mu\nu}V^{\mu} = 0 \quad \Leftrightarrow \quad V^{\mu} = f\,\xi^{\mu} \end{cases}$ 

**Remark:** There is a one-to-one correspondence between *invariant* Carrollian metrics  $\gamma$  on  $\mathcal{M}$  and Riemannian metrics  $\bar{\gamma}$  on the base  $\bar{\mathcal{M}}$ .

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Spacelike metric structure

An invariant Carrollian metric allows Alice to measure distances and angles on the base manifold  $\bar{\mathcal{M}}$  .



Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

#### Carrollian structure

#### (Invariant) Carrollian structure: following two data

- O Fundamental vector field
- (Invariant) Carrollian metric

**Example :** Future null infinity  $\mathscr{I}^+$  (or Past lightcone  $\mathscr{N}^-$ )

- Coordinates  $(u, \theta^i)$  on  $\mathscr{I}^+ \cong \mathbb{R} \times S^d$
- Null vector field  $\xi = \frac{\partial}{\partial u}$
- Carrollian metric = pullback of the metric on the unit sphere

$$ds^2 = \gamma_{ij}(\theta) \, d\theta^i d\theta^j = d\ell_{S^d}^2$$

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

### Carrollian isometries

**Carrollian isometry:** diffeomorphism of *M* preserving the

- Fundamental vector field  $\xi' = \xi$

**Remark:** For an invariant Carrollian structure, Carrollian isometries project onto isometries of the Riemannian metric  $\bar{\gamma}$  on the base  $\bar{\mathcal{M}}$ 

Motivation: BMS as conformal Carroll Ambient geometry Carrollian structures

### Carrollian isometries

**Carrollian isometry:** diffeomorphism of  $\mathcal{M}$  preserving the

- Fundamental vector field  $\xi' = \xi$
- $\textbf{O} \quad \textbf{Carrollian metric } \gamma' = \gamma$

**Example:** Vertical automorphisms of the principal  $\mathbb{R}$ -bundle

$$u' = u + f(x), \quad x' = x,$$

which are interpreted as "supertranslations" in the BMS context.



Fig. 2 in (Penrose, 1974)

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### Bondi-Metzner-Sachs as Conformal Carroll

### Conformal Carrollian structure

**Conformal Carrollian structure:** equivalence class of Carrollian structures with respect to equivalence relation

- Fundamental vector fields  $\xi \sim \Omega^{-1}\xi$
- (Invariant) Carrollian metrics  $\gamma \sim \Omega^2 \gamma$  (with  $\mathcal{L}_{\xi} \Omega = 0$ )

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### Conformal Carrollian isometries

#### Conformal Carrollian isometry: diffeomorphism of ${\mathscr M}$ such that

- (Conformal scaling)  $\xi' = \Omega^{-1}\xi$
- (Conformal isometry)  $\gamma' = \Omega^2 \gamma$



### Conformal Carrollian isometries

Conformal Carrollian isometry: diffeomorphism of  $\mathcal M$  such that

- (Conformal scaling)  $\xi' = \Omega^{-1}\xi$
- (Conformal isometry)  $\gamma' = \Omega^2 \gamma$

**Example:** For future null infinity  $\mathscr{I}^+$  at the conformal boundary of compactified Minkowski spacetime,

Theorem ((Penrose, 1965) revisited (Duval-Gibbons-Horvathy, 2014))

BMS transformations = Conformal Carrollian isometries

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### Conformal Carroll-Killing vector field

**Conformal Carroll-Killing vector field:**  $X \in \mathfrak{X}(\mathscr{M})$  such that

- (projectable)  $\mathcal{L}_X \xi = f \xi$
- (conformal Killing)  $\mathcal{L}_X \gamma = -2f \gamma$

### Conformal Carroll-Killing vector field

Consider an invariant conformal Carrollian structure.

The projection  $\bar{X} = \pi_*(X)$  on the base  $\bar{\mathcal{M}}$  of a conformal Carroll-Killing vector field X on  $\mathcal{M}$  is a conformal Killing vector field  $\bar{X}$  on  $\bar{\mathcal{M}}$ .

**Conformal Carroll-Killing vector field:**  $X \in \mathfrak{X}(\mathscr{M})$  such that

• (projectable) 
$$\mathcal{L}_X \xi = f \xi$$
 with  $\mathcal{L}_\xi f = 0$ 

$$old 2$$
 (conformal Killing)  ${\cal L}_{ar X}ar \gamma$  =  $-2ar far \gamma$ 

**Conformal Carrollian structures and symmetries** Wick-rotated Rac Sachs representation

### Conformal Carroll-Killing vector field

#### Lemma

The conformal Carroll-Killing vector fields on  $\mathscr{I}^{\pm} \cong \mathbb{R} \times S^d$  span the (extended) BMS algebra

$$(\mathfrak{e})\mathfrak{bms}_{d+2} = C^{\infty}(S^d) \ni \mathfrak{conf}(S^d)$$

where the elements of  $C^{\infty}(S^d)$  transform as densities of conformal weight -1 under  $conf(S^d)$ .

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

# Higher-spin extension

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### Towards higher-spin extension

#### First proposal

**Main idea:** rephrase the Carroll-Killing equations as commutation relations

#### Towards higher-spin extension

Consider an invariant conformal Carrollian structure.

**Conformal Carroll-Killing vector field:**  $X \in \mathfrak{X}(\mathscr{M})$  such that

 $(projectable) \mathcal{L}_X \xi = f \xi \quad \Leftrightarrow \quad [X, \xi] = f \xi$ 

(conformal Killing)  $\mathcal{L}_{\bar{X}}\bar{\gamma} = -2\bar{f}\bar{\gamma} \quad \Leftrightarrow \quad [\bar{X},\bar{\Delta}] = 2f\bar{\Delta}$ 

where  $\bar{\Delta}$  is the conformal Laplacian of the Riemannian metric  $\bar{\gamma}$ .

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### Towards higher-spin extension

#### Higher-spin recipe: Vector field → Differential operator

#### Higher-spin extension

Consider an invariant conformal Carrollian structure.

**Conformal Carroll-Laplacian symmetry:**  $\hat{D} \in \mathcal{D}(\mathcal{M})$  such that

- (projectable differential operator)  $[\hat{D}, \hat{\xi}] = \hat{F} \circ \hat{\xi}$
- (conformal Laplacian symmetry)  $[\hat{D}, \hat{\Delta}] = 2\hat{F} \circ \hat{\Delta}$

for some invariant differential operator  $\hat{F}$  on  $\mathscr{M}$  , i.e.  $[\hat{F},\hat{\xi}\,]$  = 0.

#### Higher-spin extension

Consider an invariant conformal Carrollian structure.

#### Lemma

- The conformal Carroll-Laplacian symmetries span an associative algebra hsbms( $\mathcal{M}$ ), i.e. the sum and the product of two such symmetries is still a symmetry.
- The algebra  $\mathcal{D}_{vsym}(\mathscr{M})$  of vertical conformal Carroll-Laplacian symmetries spans an ideal of the algebra  $hsbms(\mathscr{M})$ .

$$\hat{D} \in \mathcal{D}_{vsym}(\mathscr{M}) \quad \Leftrightarrow \quad$$

$$\hat{D} \in \operatorname{hsbms}(\mathscr{M})$$
 and  $\hat{D} = \hat{F} \circ \hat{\xi}$ ,

**Remark:** The vertical invariant differential operators are natural higher-spin extensions of infinitesimal supertranslations.

### Higher-spin extension

#### Theorem

$$\operatorname{hsbms}(\mathscr{I}^+) \cong \mathcal{D}_{vsym}(\mathscr{I}^+) \rtimes \operatorname{hs}(S^d)$$

#### where

- $hsbms(\mathscr{I}^+) = associative algebra of conformal Carroll-Laplacian symmetries on <math>\mathscr{I}^+ \cong \mathbb{R} \times S^d$
- $\mathcal{D}_{vsym}(\mathscr{I}^+) = ideal \text{ of vertical conformal Carroll-Laplacian symmetries on } \mathscr{I}^+ \cong \mathbb{R} \times S^d$
- hs(S<sup>d</sup>) = Eastwood-Vasiliev off-shell higher-spin algebra of symmetries of the conformal Laplacian on S<sup>d</sup>

**Remark:** The lift of symmetries of the conformal Laplacians are the higher-spin extension of infinitesimal (super)rotations.

### Higher-spin extension

#### Theorem

$$\operatorname{hsbms}(\mathscr{I}^+) \cong \mathcal{D}_{vsym}(\mathscr{I}^+) \rtimes \operatorname{hs}(S^d)$$

#### where

- $hsbms(\mathscr{I}^+) = associative algebra of conformal Carroll-Laplacian symmetries on <math>\mathscr{I}^+ \cong \mathbb{R} \times S^d$
- $\mathcal{D}_{vsym}(\mathscr{I}^+) = ideal \text{ of vertical conformal Carroll-Laplacian symmetries on } \mathscr{I}^+ \cong \mathbb{R} \times S^d$
- $hs(S^d) = Eastwood-Vasiliev$  off-shell higher-spin algebra of symmetries of the conformal Laplacian on  $S^d$

**Idea of the proof:** The symmetries of conformal Carroll-Laplacians are projectable differential operators. The kernel of the pushforward is  $\mathcal{D}_{vsym}(\mathscr{I}^+)$  and the image is  $hs(S^d)$  by definition.

### **On-shell** version

#### Definition (Intrinsic)

Wick-rotated Rac: module spanned by  $\phi \in C^{\infty}(\mathscr{I}^{+})$  such that

- (invariant)  $\mathcal{L}_{\xi}\phi = 0$
- (conformal Laplace)  $\hat{\Delta}\bar{\phi} = 0$

#### Remarks:

- Faithful irreducible module of  $\mathfrak{so}(d+1,1)$
- Unfaithful module of  $(\mathfrak{e})\mathfrak{bms}_{d+2}$  and  $\mathfrak{iso}(d+1,1)$

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### **On-shell** version

#### Definition (Holographic)

**Wick-rotated Rac:** module spanned by boundary data of solutions to d'Alembert equation with homogeneity degree  $1 - \frac{d}{2}$ 

$$\begin{cases} \Box \Phi(r, u, \theta) = 0\\ \phi(u, \theta) = \lim_{r \to \infty} \left[ r^{\frac{d}{2} - 1} \Phi(r, u, \theta) \right] \end{cases}$$

where  $(r, u, \theta^i)$  are Bondi coordinates on Minkowski spacetime  $\mathbb{R}^{d+1,1}$ .

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### **On-shell** version

Trivial Conformal Carroll-Laplacian symmetry: symmetry  $\hat{D}$  acting trivially on Wick-rotated Rac

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### **On-shell** version

Trivial Conformal Carroll-Laplacian symmetry:  $\hat{D}$  acting trivially on Wick-rotated Rac

#### Theorem (Eastwood, 2002)

The algebra of <u>non-trivial</u> conformal Carroll-Laplacian symmetries on  $\mathscr{I}^+ \cong \mathbb{R} \times S^d$  is isomorphic to the Eastwood-Vasiliev <u>on-shell</u> higher-spin algebra of symmetries of the conformal Laplacian on  $S^d$ .

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### Towards higher-spin extension

#### Second proposal

Main idea: consider Sachs representation instead

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

### Sachs representation

#### Definition (Intrinsic)

**Sachs:** unitary module spanned by square-integrable densities  $\psi \in C^{\infty}(\mathcal{M})$  of conformal weight d/2 and positive Carrollian energy endowed with the Hermitian product

$$\langle\!\langle \psi_1 \mid \psi_2 \rangle\!\rangle = i \int_{\mathscr{M}} \psi_1^* \, d\psi_2 \wedge \mathcal{V}$$

where  $\mathcal{V} = \pi^*(\bar{*}1)$  is the pullback of the volume form  $\bar{*}1$  of the base manifold  $\bar{\mathcal{M}}$ .

Local expression: Sachs (1962)

$$\langle\!\langle \psi_1 \mid \psi_2 \rangle\!\rangle = i \int du \, d^d x \sqrt{\gamma} \, \psi_1^* \, \frac{\partial \psi_2}{\partial u} = \langle \psi_1 \mid \hat{H} \mid \psi_2 \rangle$$

### Sachs representation

#### Definition (Intrinsic)

**Sachs:** unitary module spanned by square-integrable densities  $\psi \in C^{\infty}(\mathcal{M})$  of conformal weight d/2 and positive Carrollian energy endowed with the Hermitian product

$$\langle\!\langle \psi_1 \mid \psi_2 \rangle\!\rangle = i \int_{\mathscr{M}} \psi_1^* \, d\psi_2 \wedge \mathcal{V}$$

where  $\mathcal{V} = \pi^*(\bar{*}1)$  is the pullback of the volume form  $\bar{*}1$  of the base manifold  $\bar{\mathcal{M}}$ .

#### **Carrollian Physics interpretation:**

Norm-squared  $\langle\!\langle \psi \mid \psi \rangle\!\rangle = \langle \hat{H} \rangle_{\psi}$  Mean value of Carroll Hamiltonian

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### Sachs representation

#### Definition (Holographic)

**Sachs:** module spanned by boundary data of radiation solutions to d'Alembert equation

$$\begin{cases} \Box \Phi(r, u, \theta) = 0\\ \psi(u, \theta) = \lim_{r \to \infty} \left[ r^{\frac{d}{2}} \Phi(r, u, \theta) \right] \end{cases}$$

where  $(r, u, \theta^i)$  are Bondi coordinates on Minkowski spacetime  $\mathbb{R}^{d+1,1}$ .

Conformal Carrollian structures and symmetries Wick-rotated Rac Sachs representation

#### Higher-spin extension

#### Higher-spin recipe:

higher-spin algebra  $\equiv$  universal enveloping algebra / annihilator

$$\mathcal{U}((\mathfrak{e})\mathfrak{bms}_{d+2})/\operatorname{Ann}(\operatorname{Sachs})$$

# Conclusion

## Summary of results

- Identification of
  - Wick-rotated Rac
  - Sachs

as possible analogues (in Minkowski spacetime) to the scalar singleton (in Anti de Sitter spacetime)

- Geometric and manifestly BMS-invariant formulation of Sachs Hermitian product
- Definition of possible higher-spin extensions of (extended) BMS algebra which
  - contain the higher-spin extension of Poincaré algebra
  - are symmetry algebras of the corresponding BMS modules

# Thank you for your attention



illustrations of Alice from John Tenniel (1820-1914)

X. Bekaert Higher-spin BMS algebras