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Broad motivations

Despite the wide array of no-go theorems against interacting massless
theories in Minkowski spacetime (of dimension 4 and higher),

the cardinal importance of �at spacetime for physical applications

and the old issue of string theory symmetries in the tensionless limit

can be taken as broad motivation for studying higher-spin symmetries in
�at spacetime.
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Higher-spin motivations

Two tantalising questions:

1 What might be an analogue of the singleton in �at spacetime?

2 What might be higher-spin symmetry algebra in �at spacetime? *

*Open question for spacetime dimension 4 and higher, but known in dimension 3
(Afshar-Bagchi-Fareghbal-Grumiller-Rosseel, 2013; Gonzalez-Matulich-Pino-Troncoso,
2013; ...)
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Tools

Two main tools available:

1 BMS representation theory

BMS4: Seminal works

Sachs (1962)
Series of papers by McCarthy (1972-1975)

BMS3: Barnich & Oblak (2014-2015)

BMS>4: ?

2 BMS intrinsic geometry

Seminal (Penrose, 1965)

Many contributions (Ashtekar, . . . )

Modern view as conformal Carroll (Duval-Gibbons-Horvathy, 2014)

X. Bekaert Higher-spin BMS algebras



Introduction
Carroll geometry

BMS as Conformal Carroll
Conclusion

Motivations
Goals
Outline

Goals

Two main goals:

1 Discuss two BMS analogues of Rac (= scalar singleton) :

1. Wick-rotated Rac

+ looks natural and familiar
� seems not unitarisable
� is not faithful representation of BMS (nor Poincaré) only of Lorentz

2. Sachs representation

� qualitatively ≠ Rac (less degenerate)
+ faithful and unitary representation of BMS
+ corresponds to irrep of Poincaré (massless scalar, radiation solutions)
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Goals

Two main goals:

1 Discuss two BMS analogues of Rac (= scalar singleton)

2 Construct the corresponding higher-spin extension(s)
of (extended) BMS algebra(s)

o�-shell: ∃

Contains the higher-spin extension of Poincaré algebra (XB, 2010)
Make contact with BMS Killing tensors obtained from the asymptotic
symmetries of free massless higher-spin �elds
(Campoleoni-Francia-Heissenberg, 2017-2020)

Linear structure ⇒ Algebra structure

on-shell: Degenerate or ∄?
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2 Carroll geometry
Motivation: BMS as conformal Carroll
Ambient geometry
Carrollian structures

3 BMS as Conformal Carroll
Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

4 Conclusion
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Motivation: BMS as conformal Carroll
Ambient geometry
Carrollian structures

Intrinsic and geometric view
on BMS symmetries

Fig. 1 in [J.-P. Nicolas, arXiv:1508.02592 [hep-th]]
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Intrinsic view

Although BMS group is most often discussed from the point of view of
asymptotic symmetries of a bulk spacetime, it can be formulated in an

intrinsic (i.e. purely from the boundary) and

geometric (i.e. global and coordinate-free) way.

This point of view on BMS group

goes back to Penrose (1965)

allows to interpret BMS group as a conformal extension of Carroll
group (Duval-Gibbons-Horvathy, 2014)
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Ambient structures

Ambient structure: The following geometrical structures are equivalent

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ
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Ambient structures

Ambient structure: The following geometrical structures are equivalent

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

The curves are the integral lines of the fundamental vector �eld;
they are also the orbits of the R-action on M .

The space M̄ of such orbits is the base manifold of the principal
bundle

M̄ = M /R

X. Bekaert Higher-spin BMS algebras
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Ambient structures

Ambient structure: The following geometrical structures are equivalent

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

Local expression: there exist a coordinate system (u,xi) such that

Fundamental vector �eld ξ = ∂
∂u

Curves xi = xi0 parametrised by u

R-action u→ u − u0 (u0 ∈ R)
Fibration π ∶ M ↠ M̄ ∶ (u,xi)↦ xi
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Ambient structures

Example 1: Möbius model (projective null cone)

Past lightcone N − ⊂ Rd+1,1 of the origin of Minkowski spacetime
Coordinates (u, θi) on N − ≅ R × Sd
Fundamental vector �eld ξ = ∂

∂u
is null

Null rays generating the cone
R-action u→ u − u0 (u0 ∈ R)
Fibration π ∶ N −↠ Sd ∶ (u, θi)↦ θi

Cover of [B.-Oblak, arXiv:1610.08526 [hep-th]]
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Ambient structures

Example 2: Inversion xµ = xµ

x2 ⇒ N ∓ ↔ I ±

Future null in�nity I + at the conformal boundary of compacti�ed
Minkowski spacetime

Coordinates (u, θi) on I + ≅ R × Sd
Etc (idem as N −) ⋯

Cover of [B.-Oblak, arXiv:1610.08526 [hep-th]]
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Projection on the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ for some
f ∈ C∞

inv(M )
Invariant metric tensor: Lξγµν = 0

Projectable metric tensor: Lξγµν = 0 and γµνξ
ν = 0
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Intrinsic view on
Carroll geometry
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Carrollian structure

Fundamental vector �eld

&

Carrollian metric
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Timelike metric structure

Fundamental vector �eld: Nowhere vanishing vector �eld on the
spacetime manifold, ξ = ξµ∂µ ≠ 0

Provides a distinction between the type of vectors in Carroll geometry:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V µ = f ξµ with {
f ≠ 0 Timelike (or Vertical)

f > 0 Future-oriented

V µ ≠ f ξµ Spacelike

X. Bekaert Higher-spin BMS algebras
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Timelike metric structure

Fundamental vector �eld: Nowhere vanishing vector �eld on the
spacetime manifold, ξ = ξµ∂µ ≠ 0

⇒ The integral lines of the fundamental vector �eld are the only
admissible worldlines and they are vertical: all observers are at rest.
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Timelike metric structure

Fundamental vector �eld: Nowhere vanishing vector �eld on the
spacetime manifold, ξ = ξµ∂µ ≠ 0

⇒ The integral lines of the fundamental vector �eld are the only
admissible worldlines and they are vertical: all observers are at rest.
This is the origin of the nickname �Carroll� (Lévy-Leblond, 1965).
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Timelike metric structure

Fundamental vector �eld: Nowhere vanishing vector �eld on the
spacetime manifold, ξ = ξµ∂µ ≠ 0

An a�ne parameter u of this congruence of Carroll worldlines (i.e.
ξ = ∂/∂u) is a Carroll time.
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Spacelike metric structure

Carrollian metric: Positive semi-de�nite metric γ on the spacetime M
whose kernel is spanned by the fundamental vector �eld

{
γµνV

µW ν ⩾ 0

γµνV
µ = 0 ⇔ V µ = f ξµ

Remark: There is a one-to-one correspondence between invariant
Carrollian metrics γ on M and Riemannian metrics γ̄ on the base M̄ .
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Spacelike metric structure

An invariant Carrollian metric allows Alice to measure distances and
angles on the base manifold M̄ .
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Carrollian structure

(Invariant) Carrollian structure: following two data

1 Fundamental vector �eld

2 (Invariant) Carrollian metric

Example : Future null in�nity I + (or Past lightcone N −)

Coordinates (u, θi) on I + ≅ R × Sd

Null vector �eld ξ = ∂
∂u

Carrollian metric = pullback of the metric on the unit sphere

ds2 = γij(θ)dθidθj = d`2Sd

X. Bekaert Higher-spin BMS algebras
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Fundamental vector �eld ξ′ = ξ
2 Carrollian metric γ′ = γ

Remark: For an invariant Carrollian structure, Carrollian isometries
project onto isometries of the Riemannian metric γ̄ on the base M̄
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Fundamental vector �eld ξ′ = ξ
2 Carrollian metric γ′ = γ

Example: Vertical automorphisms of the principal R-bundle

u′ = u + f(x) , x′ = x ,

which are interpreted as �supertranslations� in the BMS context.

Fig. 2 in (Penrose, 1974)
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Bondi-Metzner-Sachs as Conformal Carroll
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Conformal Carrollian structures and symmetries
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Conformal Carrollian structure

Conformal Carrollian structure: equivalence class of Carrollian
structures with respect to equivalence relation

1 Fundamental vector �elds ξ ∼ Ω−1ξ

2 (Invariant) Carrollian metrics γ ∼ Ω2γ (with LξΩ = 0)
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal scaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal scaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

Example: For future null in�nity I + at the conformal boundary of
compacti�ed Minkowski spacetime,

Theorem ( (Penrose, 1965) revisited (Duval-Gibbons-Horvathy, 2014) )

BMS transformations = Conformal Carrollian isometries
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Conformal Carroll-Killing vector �eld

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (projectable) LXξ = f ξ
2 (conformal Killing) LXγ = −2f γ
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Conformal Carroll-Killing vector �eld

Consider an invariant conformal Carrollian structure.

The projection X̄ = π∗(X) on the base M̄ of a conformal Carroll-Killing
vector �eld X on M is a conformal Killing vector �eld X̄ on M̄ .

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (projectable) LXξ = f ξ with Lξf = 0

2 (conformal Killing) LX̄ γ̄ = −2f̄ γ̄

X. Bekaert Higher-spin BMS algebras
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Conformal Carroll-Killing vector �eld

Lemma

The conformal Carroll-Killing vector �elds on I ± ≅ R × Sd span the
(extended) BMS algebra

(e)bmsd+2 = C
∞(Sd) B conf(Sd)

where the elements of C∞(Sd) transform as densities of conformal
weight -1 under conf(Sd).

X. Bekaert Higher-spin BMS algebras
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Higher-spin extension
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Towards higher-spin extension

First proposal

Main idea: rephrase the Carroll-Killing equations as commutation
relations
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Towards higher-spin extension

Consider an invariant conformal Carrollian structure.

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (projectable) LXξ = f ξ ⇔ [X,ξ ] = f ξ
2 (conformal Killing) LX̄ γ̄ = −2f̄ γ̄ ⇔ [X̄, ∆̄ ] = 2f ∆̄

where ∆̄ is the conformal Laplacian of the Riemannian metric γ̄.
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Towards higher-spin extension

Higher-spin recipe: Vector �eld → Di�erential operator
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Higher-spin extension

Consider an invariant conformal Carrollian structure.

Conformal Carroll-Laplacian symmetry: D̂ ∈ D(M ) such that

1 (projectable di�erential operator) [D̂, ξ̂ ] = F̂ ○ ξ̂
2 (conformal Laplacian symmetry) [ ˆ̄D, ˆ̄∆ ] = 2 ˆ̄F ○ ˆ̄∆

for some invariant di�erential operator F̂ on M , i.e. [F̂ , ξ̂ ] = 0.
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Conformal Carrollian structures and symmetries
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Higher-spin extension

Consider an invariant conformal Carrollian structure.

Lemma

The conformal Carroll-Laplacian symmetries span an associative
algebra hsbms(M ), i.e. the sum and the product of two such
symmetries is still a symmetry.

The algebra Dvsym(M ) of vertical conformal Carroll-Laplacian
symmetries spans an ideal of the algebra hsbms(M ).

D̂ ∈ Dvsym(M ) ⇔

D̂ ∈ hsbms(M ) and D̂ = F̂ ○ ξ̂ ,

Remark: The vertical invariant di�erential operators are natural
higher-spin extensions of in�nitesimal supertranslations.
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Higher-spin extension

Theorem

hsbms(I +) ≅ Dvsym(I +) ⋊ hs(Sd)
where

hsbms(I +) = associative algebra of conformal Carroll-Laplacian
symmetries on I + ≅ R × Sd

Dvsym(I +) = ideal of vertical conformal Carroll-Laplacian
symmetries on I + ≅ R × Sd

hs(Sd) = Eastwood-Vasiliev o�-shell higher-spin algebra of
symmetries of the conformal Laplacian on Sd

Remark: The lift of symmetries of the conformal Laplacians are the
higher-spin extension of in�nitesimal (super)rotations.
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Higher-spin extension

Theorem

hsbms(I +) ≅ Dvsym(I +) ⋊ hs(Sd)
where

hsbms(I +) = associative algebra of conformal Carroll-Laplacian
symmetries on I + ≅ R × Sd

Dvsym(I +) = ideal of vertical conformal Carroll-Laplacian
symmetries on I + ≅ R × Sd

hs(Sd) = Eastwood-Vasiliev o�-shell higher-spin algebra of
symmetries of the conformal Laplacian on Sd

Idea of the proof: The symmetries of conformal Carroll-Laplacians are
projectable di�erential operators. The kernel of the pushforward is
Dvsym(I +) and the image is hs(Sd) by de�nition.
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

On-shell version

De�nition (Intrinsic)

Wick-rotated Rac: module spanned by φ ∈ C∞(I +) such that

1 (invariant) Lξφ = 0

2 (conformal Laplace) ˆ̄∆φ̄ = 0

Remarks:

Faithful irreducible module of so(d + 1,1)
Unfaithful module of (e)bmsd+2 and iso(d + 1,1)
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

On-shell version

De�nition (Holographic)

Wick-rotated Rac: module spanned by boundary data of solutions to
d'Alembert equation with homogeneity degree 1 − d

2

⎧⎪⎪⎨⎪⎪⎩

◻Φ(r, u, θ) = 0

φ(u, θ) = lim
r→∞

[ r d2−1Φ(r, u, θ) ]

where (r, u, θi) are Bondi coordinates on Minkowski spacetime Rd+1,1.
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

On-shell version

Trivial Conformal Carroll-Laplacian symmetry: symmetry D̂ acting
trivially on Wick-rotated Rac
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

On-shell version

Trivial Conformal Carroll-Laplacian symmetry:
D̂ acting trivially on Wick-rotated Rac

Theorem (Eastwood, 2002)

The algebra of non-trivial conformal Carroll-Laplacian symmetries on
I + ≅ R × Sd is isomorphic to the Eastwood-Vasiliev on-shell higher-spin
algebra of symmetries of the conformal Laplacian on Sd.
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Towards higher-spin extension

Second proposal

Main idea: consider Sachs representation instead
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Sachs representation

De�nition (Intrinsic)

Sachs: unitary module spanned by square-integrable densities
ψ ∈ C∞(M ) of conformal weight d/2 and positive Carrollian energy
endowed with the Hermitian product

⟪ψ1 ∣ ψ2⟫ = i∫
M

ψ∗1 dψ2 ∧ V

where V = π∗(∗̄1) is the pullback of the volume form ∗̄1 of the base
manifold M̄ .

Local expression: Sachs (1962)

⟪ψ1 ∣ ψ2⟫ = i∫ duddx
√
γ ψ∗1

∂ψ2

∂u
= ⟨ψ1 ∣ Ĥ ∣ ψ2⟩

X. Bekaert Higher-spin BMS algebras
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Sachs representation

De�nition (Intrinsic)

Sachs: unitary module spanned by square-integrable densities
ψ ∈ C∞(M ) of conformal weight d/2 and positive Carrollian energy
endowed with the Hermitian product

⟪ψ1 ∣ ψ2⟫ = i∫
M

ψ∗1 dψ2 ∧ V

where V = π∗(∗̄1) is the pullback of the volume form ∗̄1 of the base
manifold M̄ .

Carrollian Physics interpretation:

Norm-squared ⟪ψ ∣ ψ⟫ = ⟨Ĥ⟩ψ Mean value of Carroll Hamiltonian

X. Bekaert Higher-spin BMS algebras
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Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Sachs representation

De�nition (Holographic)

Sachs: module spanned by boundary data of radiation solutions to
d'Alembert equation

⎧⎪⎪⎨⎪⎪⎩

◻Φ(r, u, θ) = 0

ψ(u, θ) = lim
r→∞

[ r d2 Φ(r, u, θ) ]

where (r, u, θi) are Bondi coordinates on Minkowski spacetime Rd+1,1.

X. Bekaert Higher-spin BMS algebras



Introduction
Carroll geometry

BMS as Conformal Carroll
Conclusion

Conformal Carrollian structures and symmetries
Wick-rotated Rac
Sachs representation

Higher-spin extension

Higher-spin recipe:

higher-spin algebra ≡ universal enveloping algebra / annihilator

U((e)bmsd+2) /Ann(Sachs)
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Conclusion
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Summary of results

Identi�cation of

Wick-rotated Rac
Sachs

as possible analogues (in Minkowski spacetime)
to the scalar singleton (in Anti de Sitter spacetime)

Geometric and manifestly BMS-invariant formulation of Sachs
Hermitian product

De�nition of possible higher-spin extensions of (extended) BMS
algebra which

contain the higher-spin extension of Poincaré algebra
are symmetry algebras of the corresponding BMS modules

X. Bekaert Higher-spin BMS algebras



Introduction
Carroll geometry

BMS as Conformal Carroll
Conclusion

Thank you for your attention

illustrations of Alice from
John Tenniel (1820-1914)
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