## Andrei Smilga

## SPIN(7) INSTANTONS IN EIGHT DIMENSIONS

## QUARKS 2021

based on
A.S., arXiv: 2102.07415[hep-th]

- Consider $A(x)=A_{\mu}(x) d x_{\mu}$ in $\mathbb{R}^{4}$.
- Require that $F=d A-i A \wedge A$ decays fast enough at $x \rightarrow \infty$.

Then

$$
q=\frac{1}{8 \pi^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr}\{F \wedge F\}=\text { integer }
$$

Indeed:
$\operatorname{Tr}\{F \wedge F\}=d \omega_{3}, \quad \omega_{3}=\operatorname{Tr}\left\{A \wedge F+\frac{i}{3} A \wedge A \wedge A\right\}$.
Hence

$$
q=\frac{1}{8 \pi^{2}} \int_{S^{3}} \omega_{3}
$$

At infinity, $A=i g^{-1} d g$. Hence

$$
q=\frac{1}{24 \pi^{2}} \int_{S^{3}} \operatorname{Tr}\left\{g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g\right\}
$$

- Nontrivial mappings $S^{3} \rightarrow S U(2)$.

$$
\pi_{3}[S U(2)]=\mathbb{Z}
$$

The simplest nontrivial mapping

$$
\begin{equation*}
g=\frac{\mathbf{1} x_{4}-i x_{m} \sigma_{m}}{r} \tag{1}
\end{equation*}
$$

- All the gauge fields with the asymptotics

$$
A=i g^{-1} d g=\frac{\Sigma_{\mu \nu} x_{\nu} d x_{\mu}}{r^{2}}
$$

where

$$
\Sigma_{\mu \nu}=\frac{i}{2}\left(\sigma_{\mu} \sigma_{\nu}^{\dagger}-\sigma_{\nu} \sigma_{\mu}^{\dagger}\right)
$$

with $\sigma_{\mu}=(\vec{\sigma}, i)$ and $\sigma_{\mu}^{\dagger}=(\vec{\sigma},-i)$,
have the Pontryagin index $q=1$.

- The variable change

$$
\alpha_{m}=-\frac{x_{m}}{\|\vec{x}\|} \arccos \left(\frac{x_{4}}{r}\right)
$$

gives the exponential parameterization:

$$
g=\exp \left\{i \alpha_{m} \sigma_{m}\right\}=\mathbf{1} \cos \alpha+\frac{i \sin \alpha}{\alpha} \alpha_{m} \sigma_{m}
$$

In these terms,

$$
\begin{aligned}
& g^{-1} \partial_{m} g=-i A_{m}= \\
& i\left[\frac{\cos \alpha \sin \alpha}{\alpha} \sigma_{m}+\frac{\sin ^{2} \alpha}{\alpha^{2}} \alpha_{k} \varepsilon_{k m l} \sigma_{l}+\right. \\
& \left.\frac{\alpha_{m} \alpha_{k}}{\alpha^{2}}\left(1-\frac{\cos \alpha \sin \alpha}{\alpha}\right) \sigma_{k}\right] .
\end{aligned}
$$

## Instantons:

Special configurations with nonzero $q$ realizing the minimum of the action

$$
S=\int_{\mathbb{R}^{4}} \operatorname{Tr}\{F \wedge * F\}=\frac{1}{2} \int d^{4} x \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}
$$

If $q=1$, they are self-dual, $F=* F$.
The explicit expression:

$$
A=\frac{\Sigma_{\mu \nu} x_{\nu} d x_{\mu}}{r^{2}+\rho^{2}}
$$

(center at the origin).

## Spin(8) instantons

- Eight dimensions.
- Topological charge:

$$
q=\frac{1}{384 \pi^{4}} \int_{\mathbb{R}^{8}} \operatorname{Tr}\{F \wedge F \wedge F \wedge F\}
$$

- Note that

$$
\operatorname{Tr}\{F \wedge F \wedge F \wedge F\}=d \omega_{7}
$$

where

$$
\begin{aligned}
& \omega_{7}=\operatorname{Tr}\left\{A F^{3}+\frac{2 i}{5} F^{2} A^{3}+\frac{i}{5} A F A^{2} F\right. \\
& \left.-\frac{1}{5} F A^{5}-\frac{i}{35} A^{7}\right\} .
\end{aligned}
$$

- If $F \rightarrow 0$ when $x \rightarrow \infty$,

$$
q=-\frac{1}{2^{7} \cdot 3 \cdot 35 \pi^{4}} \int_{S^{7}} \operatorname{Tr}\left\{\left(g^{-1} d g\right)^{7}\right\}
$$

- A top. nontrivial embedding $S^{7} \rightarrow \operatorname{Spin}(8)$ with top. charge $q=1$ :

$$
g=\frac{\mathbf{1} x_{8}+i x_{m} \Gamma_{m}}{r}
$$

with $m=1, \ldots, 7$.
$\Gamma_{j=1, \ldots, 7}$ are purely imaginary antisymmetric $8 \times 8$ matrices satisfying the Clifford algebra,

$$
\Gamma_{m} \Gamma_{n}+\Gamma_{n} \Gamma_{m}=2 \delta_{m n} \mathbf{1}
$$

and the relation

$$
\Gamma_{1} \Gamma_{2} \Gamma_{3} \Gamma_{4} \Gamma_{5} \Gamma_{6} \Gamma_{7}=i 1 .
$$

One of many explicit representations for $\Gamma_{m}$ is

$$
\begin{align*}
& \Gamma_{1}=-\sigma_{2} \otimes \sigma_{2} \otimes \sigma_{2} ; \quad \Gamma_{2}=\mathbf{1} \otimes \sigma_{1} \otimes \sigma_{2} \\
& \Gamma_{3}=\mathbf{1} \otimes \sigma_{3} \otimes \sigma_{2} ; \quad \Gamma_{4}=-\sigma_{1} \otimes \sigma_{2} \otimes \mathbf{1} \\
& \Gamma_{5}=\sigma_{3} \otimes \sigma_{2} \otimes \mathbf{1} ; \quad \Gamma_{6}=\sigma_{2} \otimes \mathbf{1} \otimes \sigma_{1} \\
& \Gamma_{7}=\sigma_{2} \otimes \mathbf{1} \otimes \sigma_{3} \tag{2}
\end{align*}
$$

- Generators of $\operatorname{Spin}(8)$ :

$$
\Sigma_{M N}=\frac{i}{2}\left(\Gamma_{M} \Gamma_{N}^{\dagger}-\Gamma_{N} \Gamma_{M}^{\dagger}\right)
$$

where

$$
\Gamma_{M}=(\vec{\Gamma}, i), \quad \Gamma_{M}^{\dagger}=(\vec{\Gamma},-i)
$$

- $\Sigma_{m n}$ are the generators of $\operatorname{Spin}(7)$.
- Exponential parameterization:

$$
g=\exp \left\{i \alpha_{j} \Gamma_{j}\right\}=\mathbf{1} \cos \alpha+i \frac{\sin \alpha}{\alpha} \alpha_{j} \Gamma_{j},
$$

## Instanton

is a configuration of topological charge $q=1$ that has the asymptotics

$$
A=i g^{-1} d g=\frac{\Sigma_{N M} x_{N} d x_{M}}{r^{2}}
$$

and realizes the minimum of the functional

$$
\int_{R^{8}} \operatorname{Tr}\{F \wedge F \wedge \star(F \wedge F)\}
$$

It satisfies the nonlinear self-duality condition

$$
F \wedge F=\star(F \wedge F)
$$

The explicit form for the instanton centered at the origin:

$$
A=i g^{-1} d g=\frac{\Sigma_{N M} x_{N} d x_{M}}{r^{2}+\rho^{2}}
$$

[Grossman, Kephart, Stasheff, Commun. Math. Phys. 96 (1984) 431; Tchrakian, Phys. Lett. B150 (1985) 360.]

Antiinstanton:

$$
A=\frac{\tilde{\Sigma}_{N M} x_{N} d x_{M}}{r^{2}+\rho^{2}}
$$

0-7
with

$$
\tilde{\Sigma}_{M N}=\frac{i}{2}\left(\Gamma_{M}^{\dagger} \Gamma_{N}-\Gamma_{N}^{\dagger} \Gamma_{M}\right)
$$

It has $q=-1$.

- Multiinstanton configurations (generalizing AHDM 4d constructions) - see [Nakamura, Sasaki, Takesue, Nucl. Phys. B214 (1983) 452.]
- All these instantons are characterized by a single topological charge $q$. But the relevant homotopy group is

$$
\pi_{7}[\operatorname{Spin}(8)]=\mathbb{Z} \times \mathbb{Z}
$$

implying the existence of two top. invariants.
Generic top. nontrivial mappings $S^{7} \rightarrow \operatorname{Spin}(8) ?$
The mappings $S^{7} \rightarrow \operatorname{Spin}(7)$ corresponding to $\pi_{7}[\operatorname{Spin}(7)]=\mathbb{Z}$ ?

The corresponding instantons?

Octonionic instanton
[Corrigan, Devchand, Fairlie, Nuyts, Nucl. Phys. B214 (1983) 452; S. Fubini and H. Nicolai, Phys. Lett. B155 (1985) 369.]

- A different story. It satisfies certain linear quasi-self-duality conditions:

$$
F_{M N}=\frac{1}{2} C_{M N P Q} F_{P Q}
$$

- The embeddings $S^{7} \rightarrow \operatorname{Spin}(8)$ discussed above were associated with the fiber bundle

$$
\operatorname{Spin}(8) \xrightarrow{\operatorname{Spin}(7)} S^{7}
$$

- The homotopy $\pi_{7}[\operatorname{Spin}(7)]=\mathbb{Z}$ is associated with the fiber bundle

$$
\operatorname{Spin}(7) \xrightarrow{G_{2}} S^{7} .
$$

## Spin(7) constructions.

Consider the expression

$$
\begin{equation*}
g=\exp \left\{\frac{1}{2} \alpha_{m} f_{m n k} \Gamma_{n} \Gamma_{k}\right\} \tag{3}
\end{equation*}
$$

where $f_{m n p}$ is antisymmetric and

$$
f_{165}=f_{134}=f_{127}=f_{235}=f_{246}=f_{367}=f_{475}=1
$$



- $\left[\Gamma_{m}, \Gamma_{n}\right] \in \operatorname{spin}(7) ; g \in \operatorname{Spin}(7)$.

THEOREM: The expression (3) considered in the range $0 \leq\|\vec{\alpha}\| \leq \pi$ represents a map $S^{7} \longrightarrow$ $\operatorname{Spin}(7)$ associated with the fiber bundle $\operatorname{Spin}(7) \xrightarrow{G_{2}}$ $S^{7}$.

Proof. To prove that $g(\vec{\alpha})$ represents a map $S^{7} \rightarrow$ $\operatorname{Spin}(7)$, it suffices to show that $g(|\vec{\alpha}|=\pi)=-\mathbf{1}$.

- Let first $\alpha_{m}=\pi \delta_{m 1}$. Then

$$
\begin{aligned}
& g=\exp \left\{\pi\left(\Gamma_{3} \Gamma_{4}-\Gamma_{5} \Gamma_{6}+\Gamma_{2} \Gamma_{7}\right)\right\}= \\
& \exp \left\{\pi \Gamma_{3} \Gamma_{4}\right\} \exp \left\{-\pi \Gamma_{5} \Gamma_{6}\right\} \exp \left\{\pi \Gamma_{2} \Gamma_{7}\right\} \\
& =(-\mathbf{1})^{3}=-\mathbf{1}
\end{aligned}
$$

- We now rotate $\vec{\alpha}$. It does not follow immediately that $g(|\vec{\alpha}|=\pi)=\mathbf{- 1}$ also after rotation: $f_{m n k}$ is not an $S O(7)$ - invariant. Still it is true: Rotate $\vec{\alpha}$ in the plane $\{12\}$ :

$$
\alpha_{1}=\pi \cos \phi, \quad \alpha_{2}=\pi \sin \phi, \quad \alpha_{3, \ldots, 7}=0
$$

One can then show that

$$
\begin{equation*}
\ln g=\pi \Gamma_{3} \Gamma_{4}^{\prime}-\pi \Gamma_{5}^{\prime} \Gamma_{6}+\pi \Gamma_{2}^{\prime} \Gamma_{7} \tag{4}
\end{equation*}
$$

where

$$
\Gamma_{4}^{\prime}=\Gamma_{4} \cos \phi+\Gamma_{5} \sin \phi, \Gamma_{5}^{\prime}=\Gamma_{5} \cos \phi-\Gamma_{4} \sin \phi, \Gamma_{2}^{\prime}=
$$ $\Gamma_{2} \cos \phi-\Gamma_{1} \sin \phi$.

We may observe that the matrices $\Gamma_{3}, \Gamma_{6}, \Gamma_{7}$, $\Gamma_{4}^{\prime}, \Gamma_{5}^{\prime}, \Gamma_{2}^{\prime}$ and $\Gamma_{1}^{\prime}=\Gamma_{1} \cos \phi+\Gamma_{2} \sin \phi$ still obey the Clifford algebra, which means that the three terms in (4) still commute, the exponential can be "disentangled" and we still have $g=(-\mathbf{1})^{3}=\mathbf{- 1}$.

The same is true for rotations in other planes.

- Any $\vec{\alpha}$ of norm $\pi$ can be "reached" from $\alpha_{m}=$ $\pi \delta_{m 1}$ by a set of such elementary rotations, and we conclude that, for such $\vec{\alpha}, g(\vec{\alpha})=-\mathbf{1}$, indeed.
- To prove that this mapping is associated with the fiber bundle $S \operatorname{pin}(7) \xrightarrow{G_{2}} S^{7}$, we need to prove that the set of all $g(\vec{\alpha})$ can be considered as a base in this fiber bundle. And this is true, because $\ln g$ is not in the subalgebra $g_{2} \subset \operatorname{spin}(7)$, but is orthogonal to it:

$$
\left[f_{m n k} \Gamma_{n} \Gamma_{k}, h\right]=0, \quad \text { if } h \in g_{2}
$$

## Exponential expanded:

$$
\begin{array}{r}
g=\cos ^{3} \alpha 1-i \cos ^{2} \alpha \sin \alpha \frac{\alpha_{m} T_{m}}{\alpha}+ \\
\cos \alpha \sin ^{2} \alpha \frac{\alpha_{m} \alpha_{n} \Gamma_{m} T_{n}}{\alpha^{2}}-i \sin ^{3} \alpha \frac{\alpha_{m} \Gamma_{m}}{\alpha} \tag{5}
\end{array}
$$

with

$$
T_{m}=\frac{i}{2} f_{m n k} \Gamma_{n} \Gamma_{k}
$$

In Cartesian coordinates:
$g=\frac{x_{8}^{3}-i x_{8}^{2} x_{m} T_{m}+x_{8} x_{m} \Gamma_{m} x_{n} T_{n}-i x_{m} x_{m} x_{n} \Gamma_{n}}{r^{3}}$.

- The expressions for $A_{M}=i g^{-1} \partial_{M} g$ are bulky and ugly.
- The integral

$$
q=-\frac{1}{2^{7} \cdot 3 \cdot 35 \pi^{4}} \int_{S^{7}} \operatorname{Tr}\left\{\left(g^{-1} d g\right)^{7}\right\}
$$

for the topological charge was calculated numerically:

$$
q=.91 \pm .09
$$

(40 min. of Mathematica running on my laptop).

0-13

## Other groups and other dimensions

- Homotopy $\pi_{7}[\operatorname{Spin}(6)]=\mathbb{Z}$ associated with the fiber bundle $S \operatorname{pin}(6) \xrightarrow{S U(3)} S^{7}$.
- Homotopy $\pi_{7}[\operatorname{Spin}(5)]=\mathbb{Z}$ associated with the fiber bundle $S \operatorname{pin}(5) \xrightarrow{S U(2)} S^{7}$.
- No known nice expressions for the mappings. But the mappings exist and the instantons realizing the minimum of

$$
\int_{\mathbb{R}^{8}} \operatorname{Tr}\{F \wedge F \wedge \star(F \wedge F)\}
$$

exist too.

## Dimension $4 r$

- $\pi_{4 r-1}[S p(r)]=\mathbb{Z}$.
- No nice formula again. The instantons realize the minimum of the functional

$$
\int_{\mathbb{R}^{4 r}} \operatorname{Tr}\{\overbrace{F \wedge \ldots \wedge F}^{r} \star(\overbrace{F \wedge \ldots \wedge F}^{r})\}
$$

and satisfy the relations

$$
\overbrace{F \wedge \ldots \wedge F}^{r}= \pm \star(\overbrace{F \wedge \ldots \wedge F}^{r}) .
$$

## Dimension 6

- The mapping $S^{5} \rightarrow S U(3)$ associated with the fiber bundle $S U(3) \xrightarrow{S U(2)} S^{5}$ is known.

The vector

$$
V=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right), \quad\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\left|\alpha_{3}\right|^{2}=1
$$

maps for $\left|\alpha_{1}\right|>0$ to

$$
g_{1}=\left(\begin{array}{ccc}
-\frac{\alpha_{1} \alpha_{2}^{*}}{\sqrt{1-\left|\alpha_{2}\right|^{2}}} & -\frac{\alpha_{3}^{*}}{\sqrt{1-\left|\alpha_{2}\right|^{2}}} & \alpha_{1} \\
\sqrt{1-\left|\alpha_{2}\right|^{2}} & 0 & \alpha_{2} \\
-\frac{\alpha_{3} \alpha_{2}^{*}}{\sqrt{1-\left|\alpha_{2}\right|^{2}}} & \frac{\alpha_{1}^{*}}{\sqrt{1-\left|\alpha_{2}\right|^{2}}} & \alpha_{3}
\end{array}\right) \in S U(3) .
$$

[Khanna, Mukhopadhyay, Simon, Mukunda, Ann. Phys. 253 (1997) 55.]

- Similar expressions $g_{2,3}$ for the regions $\left|\alpha_{2}\right|>$ 0 and $\left|\alpha_{3}\right|>0 . S^{5}$ is described as a union of these three regions.
- The topological charge integral

$$
q= \pm \frac{1}{480 \pi^{3}} \int_{S^{5}} \operatorname{Tr}\left\{\left(g^{-1} d g\right)^{5}\right)
$$

should give 1 or -1 for this mapping

- No self-duality conditions. Instantons exist only in dimensions $D=4 r$.

