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Motivations and contents
Maximally extended gauge theories (with 16 supersymmetries)
are under intensive study for the last few years:

N = 4, 4D; N = (1,1), 6D; N = (1,0), 10D .

I N = 4, 4D SYM is UV finite and perhaps completely integrable.

I N = (1, 1), 6D SYM is not renormalizable by formal power counting
(the coupling constant is dimensionful) but is also expected to possess
some unique properties.

I Its amplitudes respect the so-called “dual conformal symmetry” like its
4D counterpart.

I It provides the effective field theory description of the low energy limit of
D5-brane dynamics.

I N = (1, 1) SYM is anomaly free (Frampton, Kephart, 1983, et al), as
distinct from N = (1, 0) SYM.

I N = (1, 1) and N = (1, 0) SYM are analogs of N = 8 supergravity
(also non-renormalizable by power-counting).



I The full world-volume action of D5-brane is expected to be of
non-abelian Born-Infeld type, generalizing the N = (1, 1) SYM action
(Tseytlin, 1997).

I The perturbative explicit calculations in N = (1, 1) SYM (as a
low-energy limit of type II superstrings) show a lot of unexpected
cancelations of the UV divergencies.

I The theory is UV-finite up to 2 loops, while at 3 loops only a single-trace
counterterm of canonical dim 10 is required. The allowed double-trace
counterterms do not appear (Bern et al, 2010, 2011; Berkovits et al,
2009; Bjornsson et al, 2011, 2012).

I To understand these peculiarities, the maximally supersymmetric
off-shell formulations are needed!

I Maximum what one can achieve off shell in 6D is N = (1, 0) SUSY. The
most natural off-shell formulation of N = (1, 0) SYM - in harmonic
N = (1, 0), 6D superspace (Howe et al, 1985; Zupnik, 1986) as a
generalization of N = 2, 4D HSS (Galperin et al, 1984).



I [N = (1, 0) SYM + 6D hypermultiplet ] = [N = (1, 1) SYM], with the
second hidden on-shell N = (0, 1) SUSY.

I How to construct higher-dimension N = (1, 1) invariants?

I In Bossard, Ivanov, Smilga, JHEP 1512 (2015) 085 there was
developed a new approach to constructing higher-dimension N = (1, 1)
invariants based on the concept of on-shell N = (1, 1) harmonic
superspace (Bossard, Howe & Stelle, 2009).

I The hidden supersymmetry tells us nothing about the precise
coefficients before invariants. To determine them, one should develop
the N = (1, 0) superfield perturbation theory. This has been done in
(Buchbinder, Ivanov, Merzlikin, Stepanyantz, 1609.00975, 1612.03190,
1704.02530).



6D superspaces
I Standard N = (1, 0), 6D superspace (Howe, Sierra & Townsend, 1983):

z = (xM , θa
i ) , M = 0, . . . , 5 , a = 1, . . . , 4 , i = 1, 2 ,

with Grassmann pseudoreal θa
i .

I Harmonic N = (1, 0), 6D superspace (Howe, Stelle & West, 1985;
Zupnik, 1986):

Z := (z, u) = (xM , θa
i , u
±i ) , u−i = (u+

i )∗, u+iu−i = 1 , u±i ∈ SU(2)R/U(1) .

I Analytic N = (1, 0), 6D superspace:

ζ := (xM
(an), θ

+a, u±i ) ⊂ Z , xM
(an) = xM +

i
2
θa

kγ
M
abθ

b
l u+k u−l , θ±a = θa

i u±i .

I Basic differential operators in the analytic basis:

D+
a = ∂−a , D−a = −∂+a − 2iθ−b∂ab ,

D0 = u+i ∂

∂u+i − u−i ∂

∂u−i + θ+a∂+a − θ−a∂−a

D++ = ∂++ + iθ+aθ+b∂ab + θ+a∂−a , D−− = ∂−− + iθ−aθ−b∂ab + θ−a∂+a ,

where ∂±aθ
±b = δb

a and ∂++ = u+i ∂
∂u−i , ∂−− = u−i ∂

∂u+i .



Basic superfields
I Analytic gauge N = (1, 0) SYM connection:

∇++ = D++ + V++ , δV++ = ∇++Λ , Λ = Λ(ζ) .

I Second harmonic (non-analytic) connection:

∇−− = D−− + V−− , δV−− = ∇−−Λ .

I Related by the harmonic flatness condition

[∇++,∇−−] = D0 ⇒ D++V−− − D−−V++ + [V++,V−−] = 0

⇒ V−− = V−−(V++, u±) .

I Wess-Zumino gauge:

V++ = iθ+aθ+bAab + 2(θ+)3
aλ
−a − 3(θ+)4D−− .

Here Aab is the gauge field, λ−a = λaiu−i is the gaugino and
D−− = Dik u−i u−k , where Dik = Dki , are the auxiliary fields.



I Covariant derivatives

∇−a := [∇−−,D+
a ] = D−a +A−a , ∇ab =

1
2i

[D+
a ,∇−b ] = ∂ab +Aab ,

A−a (V ) = −D+
a V−−, Aab(V ) =

i
2

D+
a D+

b V−−,

[∇++,∇−a ] = D+
a , [∇++,D+

a ] = [∇−−,∇−a ] = [∇±±,∇ab] = 0 .

I Covariant off-shell superfield strengths

[D+
a ,∇bc ] =

i
2
εabcd W+d , [∇−a ,∇bc ] =

i
2
εabcd W−d ,

W+a = −1
6
εabcd D+

b D+
c D+

d V−− , W−a := ∇−−W+a ,

∇++W+a = ∇−−W−a = 0 , ∇++W−a = W+a ,

D+
b W+a = δa

bF++ , F++ =
1
4

D+
a W+a = (D+)4V−− ,

∇++F++ = 0 , D+
a F++ = 0 .

I Hypermultiplet

q+A(ζ) = q iA(x)u+
i − θ

+aψA
a (x) + An infinite tail of auxiliary fields , A = 1, 2 .



N = (1,0) superfield actions
I The N = (1, 0) SYM action (Zupnik, 1986):

SSYM =
1
f 2

∞∑
n=2

(−1)n+1

n
Tr
∫

d6x d8θ du1 . . . dun
V++(z, u1) . . .V++(z, un)

(u+
1 u+

2 ) . . . (u+
n u+

1 )
,

δSSYM = 0 ⇒ F++ = 0 .

I The hypermultiplet action

Sq =
1

2f 2 Tr
∫

dζ(−4)q+A∇++q+
A , ∇++q+

A = D++q+
A + [V++, q+

A ] ,

δSq = 0 ⇒ ∇++q+A = 0 .

I N = (1, 0) superfield form of N = (1, 1) SYM action:

S(V+q) = SSYM + Sq =
1
f 2

(∫
dZLSYM +

1
2

Tr
∫

dζ(−4)q+A∇++q+
A

)
,

δS(V+q) = 0 ⇒ F++ +
1
2

[q+A, q+
A ] = 0 , ∇++q+A = 0 .

It is invariant under the second N = (0, 1) supersymmetry:

δV++ = ε+Aq+
A , δq+A = −(D+)4(ε−AV−−) , ε±A = εaAθ

±a .



N = (1,1) on-shell harmonic superspace

I Extend N = (1, 0) superspace to N = (1, 1) one,

z = (xab, θa
i ) ⇒ ẑ = (xab, θa

i , θ̂Aa).

I Double set of covariant spinor derivatives appears,

∇i
a =

∂

∂θa
i
− iθbi∂ab +Ai

a ∇̂aA =
∂

∂θ̂Aa
− i θ̂A

b∂
ab + ÂaA .

I The defining constraints of N = (1, 1) SYM read (Howe, Sierra &
Townsend, 1983; Howe & Stelle, 1984):

{∇(i
a ,∇

j)
b } = {∇̂a(A, ∇̂bB)} = 0 , {∇i

a, ∇̂bA} = δb
aφ

iA

⇒ ∇(i
aφ

j)A = ∇̂a(AφB)i = 0 (By Bianchis) .



I Next, define N = (1, 1) HSS with the double set of SU(2) harmonics
(Bossard, Howe & Stelle, 2009):

Z = (xab, θa
i , u
±
k ) ⇒ Ẑ = (xab, θa

i , θ̂Ab, u±k , u
±̂
A )

I Then pass to the analytic basis and choose the “hatted” spinor
derivatives short, ∇+̂a = D+̂a = ∂

∂θ−̂a
. The N = (1, 1) SYM constraints

are rewritten in N = (1, 1) HSS as

{∇+
a ,∇+

b } = 0 , {D+̂a,D+̂b} = 0 , {∇+
a ,D

+̂b} = δb
aφ

++̂ ,

[∇+̂+̂,∇+
a ] = 0 , [∇̃++,∇+

a ] = 0 , [∇+̂+̂,Da+̂] = 0 , [∇̃++,Da+̂] = 0 ,

[∇̃++,∇+̂+̂] = 0 .

I Here

∇+
a = D+

a +A+
a (Ẑ ) , ∇̃++ = D++ + Ṽ++(ζ̂) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂) ,

ζ̂ = (xab
an , θ

±a, θ+̂c , u
±
i , u

±̂
A ) , “3/4 analytic′′.



Solving N = (1,1) SYM constraints
I The starting point is to fix, using the Λ(ζ̂) gauge freedom, the WZ gauge

for the second harmonic connection V +̂+̂(ζ̂)

V +̂+̂ = iθ+̂a θ
+̂
b Â

ab + εabcdθ+̂a θ
+̂
b θ

+̂
c ϕ

A
d u−̂A + εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d D

ABu−̂A u−̂B ,

with Âab, ϕA
d and D(AB) being some N = (1, 0) harmonic superfields.

I Then the above constraints are reduced to some harmonic equations
which can be explicitly solved.

I We have obtained that the first harmonic connection V++ coincides
precisely with the standard N = (1, 0) one, V++ = V++(ζ), while the
dependence of all other geometric N = (1, 1) objects on the variables
with “hat” proves to be strictly fixed

V +̂+̂ = iθ+̂a θ
+̂
b A

ab − 1
3
εabcdθ+̂a θ

+̂
b θ

+̂
c D+

d q−−̂ +
1
8
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, q−−̂]

φ++̂ = q++̂ − θ+̂a W+a − iθ+̂a θ
+̂
b ∇

abq+−̂ +
1
6
εabcdθ+̂a θ

+̂
b θ

+̂
c [D+

d q−−̂, q+−̂]

+
1
24
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, [q+−̂, q−−̂]] .



I Here, q+±̂ = q+A(ζ)u±̂A , q−±̂ = q−A(ζ)u±̂A and W+a, q±A are just the
N = (1, 0) superfields used previously. In the process of solving the
constraints, there appeared the analyticity conditions for q+A, as well as
the full set of the superfield equations of motion

∇++q+A = 0 , F++ =
1
4

D+
a W+a = −1

2
[q+A, q+

A ] .



Invariants in N = (1,1) superspace: d=6, 8, 10
I The advantage of using the constrained N = (1, 1) strengths φ++̂ and

their covariant derivatives for constructing various invariants is their
extremely simple transformation rules under N = (0, 1) supersymmetry

δΦ(Ẑ ) = −
(
ε+̂a

∂

∂θ+̂a
+ ε−̂a

∂

∂θ−̂a
+ 2iε−̂a θ

+̂
b ∂

ab)Φ(Ẑ ) + [Λ(compen),Φ(Ẑ )] ,

where Λ(compen) is a compensating gauge parameter.
I Lagrangian densities for all invariants can be constructed as Tr of

various products of φ++ and its covariant harmonic, spinor and
space-time derivatives. These are in adjoint of gauge group, so their
products under the trace transform as the ordinary N = (1, 1)
superfields. Integrating them over the complete bi-HSS or its invariant
subspaces, we obtain N = (1, 1) invariant quantities.

I These super(sub)spaces are total bi-HSS (16 fermionic coordinates)
and its various analytic subspaces (8 and 12 fermionic coordinates):

Ẑ = (xab, θ±c , θ±̂d , u
±
k , u

±̂
A ), ζ̂ = (xab, θ+c , θ+̂d u±k , u

±̂
A )

ζ̂I = (ζ̂, θ−a), ζ̂II = (ζ̂, θ−̂a )



I So we have four types of the invariants

S :=

∫
dẐ L , S :=

∫
d ζ̂(−4,−̂4)L(+4,+̂4) ,

SI :=

∫
d ζ̂(0,−̂4)

I L(0,+̂4)
I , SII :=

∫
d ζ̂(−4,0)

II L(+4,0)
II .

I By definition, the dimension of the given invariant is the canonical
dimension (in mass units) of the component Lagrangian density (the
“microscopic” action corresponds to the dimension d = 4). The
dimensions of various “bricks” for constructing invariants are

[∇±a ] = [∇−̂a] = [D+̂a] = 1/2 , [∇ab] = [φ++̂] = 1 , [∇±±] = [∇±̂±̂] = 0 ,

[dẐ ] = 2 , [d ζ̂(−4,−̂4)] = −2 , [d ζ̂(0,−̂4)
I ] = [d ζ̂(−4,0)

II ] = 0 .

I Firstly we recall invariants constructed in G. Bossard, E.I., A.Smilga,
2015. The first non-trivial invariant corresponds to the canonical
dimension d = 6, i.e. it is dimensionless. Correspondingly, the
dimensions of superfield Lagrangians defined above are

[L] = −4 , [L(+4,+̂4)] = 0 , [L(0,+̂4)
I ] = [L(+4,0)

II ] = −2 .

All invariants except the second one are ruled out on the dimensionality
grounds.



I No analytic bi-harmonic densities of the dimension 2 and the charges
(+4, +̂4) can be constructed from the basic “bricks”. So there exist no
on-shell N = (1, 1) invariants with the component Lagrangian density
of the canonical dimension 6. This amounts to the one-loop finiteness
of 6D , N = (1, 1) SYM theory.

I The single-trace on-shell d = 8 invariant is unique and admits a simple
representation in N = (1, 1) superspace

S(1)
(8) ∼

∫
d ζ̂(−4,−̂4) (φ++̂)4 .

I The double-trace d = 8 invariant is also unique and reads

S(2)
(8) ∼

∫
d ζ̂(−4,−̂4) Tr(φ++̂)2Tr(φ++̂)2 .

Both invariants are N = (1, 0)-invariant only on-shell. Since the
6D,N = (1, 0) HSS supergraph techniques should yield expressions
with off-shell N = (1, 0) supersymmetry, the absence of such invariants
indicates the two-loop finiteness of 6D , N = (1, 1) SYM theory. Such
invariants could still appear in the finite part of the total effective action.



I In the d = 10 case the dimensions of the admissible superfield
Lagrangian densities are

[L] = 2 , [L(+4,+̂4)] = 6 , [L(0,+̂4)
I ] = [L(+4,0)

II ] = 4 . (-5)

I Two single-trace d = 10 invariants can be constructed

S(10) = Tr
∫

dẐ φ++̂φ−−̂ , SI(10) = Tr
∫

d ζ̂(0,−̂4)
I (φ++̂)2(φ−+̂)2 .

I In fact, these two are equivalent up to a numerical coefficient. This can
be shown by representing dẐ = d ζ̂(0,−̂4)

I (D+̂)4. The double-trace
invariants can be defined only as integrals over 3/4 analytic subspaces

S(2)
(10)I ∼

∫
d ζ̂(0,−̂4)

I Tr (φ++̂φ−+̂)Tr (φ++̂φ−+̂) ,

S(2)
(10)II ∼

∫
d ζ̂(−4,0)

II Tr (φ++̂φ+−̂)Tr (φ++̂φ+−̂) .

I The single-trace invariant is off-shell N = (1, 0) invariant, so it can
appear as a three-loop counterterm. The second double-trace invariant
cannot appear because it is N = (1, 0) on-shell supersymmetric. The
first double-trace invariant is still off-shell N = (1, 0) invariant, so its
appearance is not forbidden and something more is needed to explain
the absence of logarithmic divergences at three loops.



d=12 invariants

I This part of the talk is based on a recent paper S. Buyukli & E. Ivanov,
2105.05899 [hep-th].

I The dimensions of the relevant Lagrangians are as follows

[L] = 4 , [L(+4,+̂4)] = 8 , [L(0,+̂4)
I ] = [L(+4,0)

II ] = 6 .

I It is impossible to construct, out of the elementary “bricks” φ±±̂, φ∓±̂

and those obtained from them through the action of the covariant
differential operators ∇±a ,D+̂a,∇−̂a and ∇ab, the gauge invariant and
manifestly analytic superfield objects possessing the charges (+4, +̂4),
(+4, 0) or (0, +̂4) with the above dimensions.

I So we are left with the chargeless general bi-HSS superfield densitiesL
of the dimension 4 as the only candidates for the d = 12 invariants.

I One can construct invariants containing four superfield strengths and no
derivatives at all, or containing lesser number of strengths (three and
two) and the proper number of derivatives distributed between them.



I We start with the first kind of invariants. A’priory one can introduce ten
chargeless Lagrangian densities composed from φ++̂ and various
harmonic projections thereof:

J1 = Trφ++̂φ++̂φ−−̂φ−−̂ , J2 = Trφ++̂φ−−̂φ++̂φ−−̂ ,

J3 = Trφ+−̂φ+−̂φ−+̂φ−+̂ , J4 = Trφ+−̂φ−+̂φ+−̂φ−+̂ ,

I1 = Trφ++̂φ+−̂φ−+̂φ−−̂ , I2 = Trφ++̂φ−+̂φ−−̂φ+−̂ ,

I3 = Trφ++̂φ−−̂φ+−̂φ−+̂ , I4 = Trφ++̂φ−−̂φ−+̂φ+−̂ ,

I5 = Trφ++̂φ+−̂φ−−̂φ−+̂ , I6 = Trφ++̂φ−+̂φ+−̂φ−−̂ .

I Using the opportunity to integrate by parts with respect to harmonic
derivatives and various harmonic constraints and relations like
φ−−̂ = ∇−−φ+−̂ = ∇−̂−̂φ−+̂,∇−−φ−±̂ = ∇−̂−φ±−̂ = 0, etc, we find a
lot of relations between these densities (up to total derivatives):

I1 = I3 = I4 = I6 = −1
2

J2 , I2 = I5 =
1
2

J2 − J1, J3 = J1 , J4 = J2 .

I We choose as independent J1, J2 and so construct two independent
single-trace invariants without derivatives

S(1)
(12)I ∼ Tr

∫
dẐ φ++̂φ++̂φ−−̂φ−−̂ , S(1)

(12)II ∼ Tr
∫

dẐ φ++̂φ−−̂φ++̂φ−−̂ .



I Analogously, one can define two independent double-trace invariants:

S(2)
(12)I ∼

∫
dẐ Tr (φ++̂φ++̂) Tr (φ−−̂φ−−̂) ,

S(2)
(12)II ∼

∫
dẐ Tr(φ++̂φ−−̂) Tr (φ++̂φ−−̂) .

I As for invariants with derivatives, one can handle them in a similar way.
Only two independent invariants are left:

S(1)
(12)(3) ∼ Tr

∫
dẐ D+̂aφ−−̂∇+

a φ
−−̂φ++̂,

S(1)
(12)(2) ∼ Tr

∫
dẐ ∇abφ

−−̂∇abφ++̂ .

We observe that the d = 12 invariants cannot be transformed to integrals of
the manifestly analytic Lagrangian densities over the appropriate analytic
subspaces and N = (1, 0) supersymmetry is off-shell in them. So exists no
any “protection” for them to appear as possible 4-loop counterterms in the
N = (1, 0) superfield perturbation theory computations in N = (1, 1) SYM.



Passing to N = (1,0) SYM superfields
I Neglecting the hypermultiplet superfields yields

φ++̂ → −θ+̂a W+a , V +̂+̂ → iθ+̂a θ
+̂
b A

ab .

φ−+̂ = ∇−−φ++̂ → −θ+̂a W−a .

I It is also straightforward to compute the N = (1, 0) SYM limit of V −̂−̂

V −̂−̂ → iθ−̂a θ
−̂
b A

ab − 1
6

Ψ−̂3dθ+̂a Dd W+a − 1
24

Ψ−̂4 θ+̂a θ
+̂
b {W

+a,W−b}

and, then, of φ±−̂ = ∇−̂−̂φ±+̂:

φ+−̂ → −θ−̂a W+a − iθ−̂b θ
−̂
c θ

+̂
a DbcW+a − 1

6
Ψ−̂3dθ+̂a θ

+̂
b D+

d {W
−a,W+b}

+
1

24 · 6 Ψ−̂4Ψ+̂3dεabcd [{W+a,W−b},W+c ] ,

φ−−̂ → −θ−̂a W−a − iθ−̂b θ
−̂
c θ

+̂
a DbcW−a − 1

6
Ψ−̂3dθ+̂a θ

+̂
b [D+

d W−a,W−b]

+
1

24 · 6 Ψ−̂4Ψ+̂3dεabcd [{W+a,W−b},W−c ] .



I To pass to N = (1, 0) superfields, one represent the N = (1, 1)

integration measure as dẐ = dZdû(D−̂)4(D+̂)4 and then integrate over
θ±̂a and u±̂A . In this way, we obtain

S(1)
(12)I,II →

∫
dZ L(1)

(12)I,II ,

L(1)
(12)I = −2εabcd Tr

{(
W−aW+bW+cW−f + W−f W+aW+bW−c)D+

f W−d

+ W+aW+bDfgW−cDfgW−d},
L(1)
(12)II = 2εabcd Tr

{(
W−aW+bW−f W+c + W+aW−f W+bW−c)D+

f W−d

−W+aDfgW−bW+cDfgW−d}.
I For double-trace invariants we obtain

S(2)
(12)I,II →

∫
dZ L(2)

(12)I,II ,

L(2)
(12)I = 4 εabcd Tr

(
W+aDgf W

+b)Tr
(
W−cDgf W−d),

L(2)
(12)II = −2 εabcd

{
Tr
(
W+aDfgW−b)Tr

(
W+cDfgW−d)

+ Tr
(
W−f W+a)Tr

(
{W+b,W−c}D+

f W−d)}.



I In the abelian limit all these invariants coincide up to numerical
coefficients,

S(abel)
(12) ∼ εabcd

∫
dZ ∂gf W+a∂gf W

+bW−cW−d ,

which is not a total derivative even on shell, with ∂gf∂
gf W±d = 0. This

sort of invariants could be relevant to the Coulomb branch of the theory,
with the original gauge symmetry broken down to some abelian
subgroup.

I For invariants with derivatives, the reduction to their N = (1, 0) SYM
cores can also be performed. The characteristic feature of the resulting
expressions is that they are vanishing in the abelian limit.



I It is of interest to see what kind of interaction the abelian invariant gives
in components, with all fields besides gauge field being omitted. This
further reduction amounts to representing

V++ = iθ+aθ+bAab ,

V−− = iθ−aθ−bAab + Ψ−3
d θ+cFd

c , Fd
c :=

1
6
εabfd(∂abAfc − ∂fcAab

)
,

W+a = −θ+bFa
b , W−a → −iθ−bθ−cθ+d∂bcFa

d .

I Substituting it in S(abel)
(12) and integrating there over θ s we obtain

S(abel)
(12) → −2εabcdεefgh

∫
d6x

(
∂ ltFe

a ∂ltF f
b
) (
∂mnFg

c ∂mnFh
d
)
.

In the vector notation, with

Fa
b = − 1

12
(σMN)a

bFMN , FMN = ∂MAN − ∂NAM ,

this expression can be rewritten as

S(abel)
(12) ∼

∫
d6x

[(
∂FMN · ∂FMN

)2
+ 2
(
∂FMN · ∂FST )(∂FMN · ∂FST

)
− 4
(
∂FMN · ∂FST )(∂FMS · ∂FNT

)
− 8
(
∂FM

N · ∂FMT
)(
∂FSN · ∂F T

S
)]
,

with ∂FMN · ∂FMN := ∂LFMN∂LFMN , etc.



It is interesting that there exist no d = 12 invariants which could produce, in
the abelian limit, the expression like ∼ F 6, as distinct from the d = 8
invariants, which contain F 4 term in such a limit.



Summary and outlook
I Off-shell N = (1, 0) and on-shell harmonic N = (1, 1) superspaces can

be efficiently used to construct higher-dimensional invariants in 6D
SYM theories.

I The full set of superfield invariants of dimensions d = 8, d = 10 and
d = 12 with N = (1, 1) on-shell supersymmetry was explicitly given.

I All d = 6 N = (1, 1) invariants are on-shell vanishing, implying the UV
finiteness of N = (1, 1) SYM at one loop.

I No d = 8 N = (1, 1) invariants with off-shell N = (1, 0) supersymmetry
exist whence the two-loop finiteness follows.

I The single-trace d = 10 invariant can be given as an integral over full
N = (1, 1) superspace, while the double-trace one cannot. This feature
combined with an additional reasoning could explain why the
double-trace invariant is UV protected.

I Four independent single-trace and two double-trace N = (1, 1)
invariants with canonical dimension d = 12 exist, all admitting off-shell
N = (1, 0) supersymmetry. They could appear as 4-loop counterterms.



I Some further possible lines of development:

(a) To reproduce all the higher-dimensional invariants constructed from
the quantum N = (1, 0) superfield perturbation theory.

(b) To move farther to the dimensions d ≥ 14. There are arguments
(Smilga, 2016) that, starting with d = 16 (six loops), the equations of
motion are deformed and so the on-shell N = (1, 1) approach should
be properly modified. Which principle could be behind such a
modification?

(c) To work out the quantum superfield perturbation theory directly in
N = (1, 1) double-harmonized superspace.

(d) To apply the same methods for constructing the Born-Infeld action
with manifest off-shell N = (1, 0) and hidden on-shell N = (0, 1)
supersymmetries. To check the hypothesis that such an action could be
identified with the full quantum effective action of N = (1, 1) SYM.

(e) Applications in supergravity?
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