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Sakharov Statue in Yerevan

Image from the Wikipedia page about Andrei Sakharov
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Sakharov for peace: a concrete example

Sakharov on Artsakh (Karabakh)

"For Azerbaijan the issue of Karabakh is a matter of ambition, for
the Armenians of Karabakh, it is a matter of life and death."

"If anyone was in doubt before Sumgait whether Nagorno-Karabakh
should belong to Azerbaijan, then after this tragedy no one can have
the moral right to insist that it should."
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Stepanakert, October 2020. Image credit: AP
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Reference

Based on:

Joaquim Gomis, Euihun Joung, Axel Kleinschmidt and KM
“Colourful Poincaré symmetry, gravity and particle actions”
(arXiv:2105.01686)
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Motivation from Field Theory

The general problem

Four properties that are hard to combine in a classical field theory:

1. Extended (bosonic) space-time symmetries,
2. Local action principle,

3. Unitarity,

4. Non-trivial bulk propagation.

Examples are available with any three of these properties.
No satisfactory example is available with all four.
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Motivation from Field Theory

The general problem

Four properties that are hard to combine in classical gravity:

1. Extended (bosonic) space-time symmetries,
2. Local action principle,

3. Unitarity,

4. Non-trivial bulk propagation.

Known examples with three of these properties

2,3,4: Einstein-Hilbert Gravity, SUGRA.

1,3,4: Vasiliev's Higher Spin Gravity.

1,2,4: Conformal Gravity (and much more).

1,2,3: Higher Spin (Chern-Simons) Gravities in 3d.
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Another Motivation

The general problem

Particle in a constant electromagnetic background can be described
using Maxwell algebra (see, e.g., Gomis, Kleinschmidt '17):

[Map, Meg] = Naec Mog + - - - [Mab, Pe] = NacPo — MocPa
[(Pas Py] = Zap s [Mab, Zed] = NacZbi+- - - [Zab, Zea) = 0.
A natural question: what if we want to develop a theory of a particle

in a constant Yang-Mills background? One needs to colour-decorate
the Maxwell algebra, which, in turn requires Coloured Poincaré.
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Colouring Isometry

Assume we have a theory of gravity perturbatively defined around a
vacuum with isometry algebra g; (e.g., Poincaré). Coloured version
of this algebra is a product of the isometry with a color factor:

with elements:

Fr=MxoT!, Mxecg, T eg.

When is this product a Lie algebra? Commutator is given as:

1 1
[Mx&T!, My®T’] = B [MX,MY]®{TI’TJ}+§ {Mx, My}®[T!, T
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Coloured Isometry

In case if the algebra g; (g.) is not associative, the last (first) term
is not well defined unless the algebra g. (g;) is commutative. For
g; = Poincaré, the g. has to be commutative and associative.
(Wald '87)

Adding physically relevant conditions:

o Positive-definite bilinear form (unitarity)

o Symmetric structure constants (derived from the cubic vertex)

Then, g. is a direct sum of one-dimensional algebras.
Corresponding multi-gravity is described by a sum of
Einstein-Hilbert actions with no cross interaction
(Boulanger-Damour-Gualtieri-Henneaux '01).
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Coloured Isometry

Commutator of the product algebra:

1 1
[Mx@T!, My ®T”] = 5 [Mx, MY]®{TI,TJ}+5 {Mx, My }[T!, T7]

if the isometry algebra g; is associative, the colour algebra g. does
not have to be commutative: non-trivial Coloured isometry possible

Example: Coloured Higher-Spin algebra
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No-go Theorems vs Yes-go examples

Interactions between multiple massless spin-two fields are trivial.
Wald '86-'87; Boulanger-Damour-Gualtieri-Henneaux '01

Vasiliev system allows for colour decoration (contains higher-spins,
AdS background, flat limit not understood).
Konstein-Vasiliev '89

Coloured Gravity in (A)dSs (higher spins not necessary, but can be
added)
Gwak, Joung, KM, Rey '15
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Coloured (A)dSs Gravity

The AdS3 isometry algebra is s0(2,2) ~ sl(2, R) @ s[(2, R). One
can extend it by two more generators to an associative algebra
gl(2, R) @ gl(2, R) which can be coloured. The two extra
generators correspond to vector field (spin-one).

Key to colouring gravity in three dimensions: vector gauge fields.
Coloured AdSs algebra:

g = (gl @ gly) @ u(N)
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Coloured (A)dSs Gravity

Coloured AdSs3 algebra:
g=(u(l,1)®eu(l,1)®@u(N)=u(N,N)@&u(N,N)

The action for Coloured Gravity can be given in a Chern-Simons
form (similar to Achucaro-Townsend AdS3 Chern-Simons gravity):

§="" TT(AAA—F;A/\A/\A)

C Ar M;

There is still some ambiguity in the choice of bilinear form. We
choose it uniquely by requiring the gravity to be Einstein-Hilbert.
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Poincaré algebra in three dimensions

Poincaré algebrain d =3 (M, = %ﬁabc MPe):
[Ma;Mb] :GabcMCa [Maapb] = EabcPCa [Paapb] =0,
can be realised as:

Ma:La®I, Pa:iLa®Ja

where
I’ =7, IJ=JI=J, J*=0.

and

[Laa Lb] = ‘EabC L,

L, € su(1,1) ~sl(2, R) ~ so(1,2)
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Associative extension of 3d Poincaré

Extending su(1,1) to u(1,1) adding a unit element,

1 1
L, Ly = ieabch‘i‘ZnabIQa

we can extend Poincaré to associative algebra:
A=u(1,1)®a=(Le®ZL, Li®T, LT, I,®J),
which can be multiplied by u(N) colour algebra:

cPoinz = A ® u(N)
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Coloured Poincaré algebra

cPoing = u(N, N) €aq5 u(N, N)

Coloured Poincaré generators

Coloured Lorentz:

~

M =iL,®@TT!, N =L, ZTxT!,
Coloured Translations:

Pl=L,®J®T', Q' =LeJaT'.
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Coloured Lorentz algebra u(N, V)

Generators

Coloured rotations: M({Az (Mo, M}),

Coloured boosts: M = (My, M), ML = (My, M)
Internal rotations: N1 = (N, NT)

N is the central element

Commutators

~

|:MI Mb:|_l chJ MK_lna fIJ K
2 )

[ e NJ] fIJ ME [ NT, N‘?] _ J?ﬁf{ NE
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Coloured Translations

Translations

Spacetime: PZ: (P,, Pl), internal: sz @, QH

Commutators

Lorentz with Translations:

[ME,PE] = %5abcgﬁfgpcl? - %nabfﬁng{,

[M,Q7) = 775 PF,

VLRI =FFR PR, INLQT| = FR R,
Translations:

[PZ,PI;?] —0, [P({A,Qf} —0, [QT,Qf] —0.
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Coloured Minkowski Gravity

Remove the center of the Coloured Poincaré (N, Q)

Mzz(MaaMc{)v NI: PO{A:(Paan)v QI

(M, , Ml NT) € su(N, N)

=" Tr(A/\A—l—;A/\A/\A),

:471' Ms
A € su(N,N) €,q5 su(N,N)

The bilinear form uniquely fixed by requiring the gravity to be
Einstein-Hilbert.

V.
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Massive Coloured Particle action — nonlinear realisation

Reference momentum

P, =md?, Pl =0, Q' =o0.

a

The little group

The stability group of this momentum is span by:

(Mo, MI, NP eu)®su(N)Psu(N)
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Massive Coloured Particle action — nonlinear realisation

Reference momentum

Boost elements

The elements of the factor group
G/H =SU(N,N)/(U(1)® SU(N) ® SU(N))

are of the form:

_ 10 V* . e
b—exp[§(v_ 0)], with (V)T =V~
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Massive Coloured Particle action — nonlinear realisation

Reference momentum

- T 0
= (0 —iI)

The orbit of the reference momentum

icosh VVTV— —jsinhVVIVEy/+

bPbvl=m , VVEV
iv—smhv— V}’V{V‘ —icoshVV-V+
P2 +m?l=0
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Coloured Particle

L= [XP + 1L (P + m?1)|

2N

Semisimple Orbits

The solutions of the covariant equation P2 + m?2I = 0 are parame-
terized by diagonal matrices (up to su(N, N) rotations)

P, = mdiag(i, ..., 0 —t, ..., —0, 0y ... 0, —0,...,—1),

There are N + 1 orbits: £=0,1,...,N

For N =1, two orbits: positive and negative energy particles.
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Coloured Particle variations

Massless coloured particle action

S = %/dtTr[]P’X —i—IL]P’ﬂ

AdS Coloured Particle action

S = %/dt’ﬁ [PX + L (((1 = X)P(1 + X))? + m?1)
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Coloured Minkowski space

Coloured Minkowski point

X=2P, + 2% Pl +y; Q'

Coloured Poincaré transformations

Lie algbra element A = O + A with

(O):w“Ma—kw?M(f—i—a[NI, A:aaPa—i-a?PaI—i-ﬁjQI

coloured Lorentz coloured translations

5,X = [0,X] + A
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Coloured Minkowski space

Coloured Minkowski point

X=2°P,+ 2Pl +4;Q,

Coloured Poincaré transformations

b 1 ¢IJ b
oAz = gp” W’ x° + 75 6°7 ept wr TG + a”,

adJKI O.)S x([:{

AT} = epc” wbxﬁ + epe” wl} ¢+ %Ebc
JK JK

+f P rwiyk — f 1oy 2% + of,

fJK

Sayr = — 1 map fTE w2 — F 5oy + B
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Distance in Coloured Minkowski

A metric on coloured Minkowski space that is invariant under
coloured Lorentz transformations is given by

1 1 1 1J
WTr(XZ) = wal‘bnab + Nm?xf’,nabéu - Nylyﬂs

)

where 1, is the (— + +) Minkowski metric and 67/ the SU(N)
invariant metric.
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Coloured Particle action

Integral of the line element — “geometric action”
e = m/dT\/—Tr[Xﬂ

In the Hamiltonian form:

Syeo = %/dﬂ& [XP+ e (P2 +m?)]

Compare to the NLR action

SNLR = ZLN/dTTY [XP+L (]P’2 +m211)}
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Coloured Maxwell algebra, particle in Yang-Mills background.

Field theory of Coloured Particles — CG with matter.
Extended objects?

Higher dimensions?

Karapet Mkrtchyan Coloured Poincaré algebra and corresponding particles



Karapet Mkrtchyan



