Coloured Poincaré algebra and corresponding particles

Karapet Mkrtchyan

Imperial College London

Integrability, Holography, Higher-Spin Gravity and Strings (dedicated to A.D. Sakharov's centennial)

May 31, 2021

Sakharov Statue in Yerevan

Image from the Wikipedia page about Andrei Sakharov

Sakharov for peace: a concrete example

Sakharov on Artsakh (Karabakh)

"For Azerbaijan the issue of Karabakh is a matter of ambition, for the Armenians of Karabakh, it is a matter of life and death."
"If anyone was in doubt before Sumgait whether Nagorno-Karabakh should belong to Azerbaijan, then after this tragedy no one can have the moral right to insist that it should."

Stepanakert, October 2020. Image credit: AP

Reference

Based on:

 Joaquim Gomis, Euihun Joung, Axel Kleinschmidt and KM "Colourful Poincaré symmetry, gravity and particle actions" (arXiv:2105.01686)
Motivation from Field Theory

The general problem

Four properties that are hard to combine in a classical field theory:

1. Extended (bosonic) space-time symmetries,
2. Local action principle,
3. Unitarity,
4. Non-trivial bulk propagation.

Examples are available with any three of these properties. No satisfactory example is available with all four.

Motivation from Field Theory

The general problem

Four properties that are hard to combine in classical gravity:

1. Extended (bosonic) space-time symmetries,
2. Local action principle,
3. Unitarity,
4. Non-trivial bulk propagation.
[^0]
Another Motivation

The general problem

Particle in a constant electromagnetic background can be described using Maxwell algebra (see, e.g., Gomis, Kleinschmidt '17):

$$
\begin{gathered}
{\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d}+\ldots, \quad\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}} \\
{\left[P_{a}, P_{b}\right]=Z_{a b}, \quad\left[M_{a b}, Z_{c d}\right]=\eta_{a c} Z_{b d}+\ldots, \quad\left[Z_{a b}, Z_{c d}\right]=0 .}
\end{gathered}
$$

A natural question: what if we want to develop a theory of a particle in a constant Yang-Mills background? One needs to colour-decorate the Maxwell algebra, which, in turn requires Coloured Poincaré.

Colouring Isometry

Assume we have a theory of gravity perturbatively defined around a vacuum with isometry algebra \mathfrak{g}_{i} (e.g., Poincaré). Coloured version of this algebra is a product of the isometry with a color factor:

$$
\mathfrak{g}=\mathfrak{g}_{i} \otimes \mathfrak{g}_{c}
$$

with elements:

$$
F_{X}^{I}=M_{X} \otimes T^{I}, \quad M_{X} \in \mathfrak{g}_{i}, \quad T^{I} \in \mathfrak{g}_{c}
$$

When is this product a Lie algebra? Commutator is given as:
$\left[M_{X} \otimes T^{I}, M_{Y} \otimes T^{J}\right]=\frac{1}{2}\left[M_{X}, M_{Y}\right] \otimes\left\{T^{I}, T^{J}\right\}+\frac{1}{2}\left\{M_{X}, M_{Y}\right\} \otimes\left[T^{I}, T^{J}\right]$

Coloured Isometry

In case if the algebra $\mathfrak{g}_{i}\left(\mathfrak{g}_{c}\right)$ is not associative, the last (first) term is not well defined unless the algebra $\mathfrak{g}_{c}\left(\mathfrak{g}_{i}\right)$ is commutative. For $\mathfrak{g}_{i}=$ Poincaré, the \mathfrak{g}_{c} has to be commutative and associative.
(Wald '87)

Adding physically relevant conditions:

- Positive-definite bilinear form (unitarity)
- Symmetric structure constants (derived from the cubic vertex)

Then, \mathfrak{g}_{c} is a direct sum of one-dimensional algebras. Corresponding multi-gravity is described by a sum of Einstein-Hilbert actions with no cross interaction
(Boulanger-Damour-Gualtieri-Henneaux '01).

Coloured Isometry

Commutator of the product algebra:

$$
\left[M_{X} \otimes T^{I}, M_{Y} \otimes T^{J}\right]=\frac{1}{2}\left[M_{X}, M_{Y}\right] \otimes\left\{T^{I}, T^{J}\right\}+\frac{1}{2}\left\{M_{X}, M_{Y}\right\} \otimes\left[T^{I}, T^{J}\right]
$$

if the isometry algebra \mathfrak{g}_{i} is associative, the colour algebra \mathfrak{g}_{c} does not have to be commutative: non-trivial Coloured isometry possible

Example: Coloured Higher-Spin algebra

No-go Theorems vs Yes-go examples

No-Go's

Interactions between multiple massless spin-two fields are trivial. Wald '86-'87; Boulanger-Damour-Gualtieri-Henneaux '01

Yes-Go's

Vasiliev system allows for colour decoration (contains higher-spins, $A d S$ background, flat limit not understood).
Konstein-Vasiliev '89

Coloured Gravity in $(A) d S_{3}$ (higher spins not necessary, but can be added)
Gwak, Joung, KM, Rey '15

Coloured $(A) d S_{3}$ Gravity

The $A d S_{3}$ isometry algebra is $\mathfrak{s o}(2,2) \sim \mathfrak{s l}(2, R) \oplus \mathfrak{s l}(2, R)$. One can extend it by two more generators to an associative algebra $\mathfrak{g l}(2, R) \oplus \mathfrak{g l}(2, R)$ which can be coloured. The two extra generators correspond to vector field (spin-one).

Key to colouring gravity in three dimensions: vector gauge fields.

Coloured $A d S_{3}$ algebra:

$$
\mathfrak{g}=\left(\mathfrak{g l}_{2} \oplus \mathfrak{g l}_{2}\right) \otimes \mathfrak{u}(N)
$$

Coloured $(A) d S_{3}$ Gravity

Coloured $A d S_{3}$ algebra:

$$
\mathfrak{g}=(\mathfrak{u}(1,1) \oplus \mathfrak{u}(1,1)) \otimes \mathfrak{u}(N)=\mathfrak{u}(N, N) \oplus \mathfrak{u}(N, N)
$$

The action for Coloured Gravity can be given in a Chern-Simons form (similar to Achucaro-Townsend $A d S_{3}$ Chern-Simons gravity):

$$
S=\frac{\kappa}{4 \pi} \int_{M_{3}} \operatorname{Tr}\left(\mathcal{A} \wedge \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

There is still some ambiguity in the choice of bilinear form. We choose it uniquely by requiring the gravity to be Einstein-Hilbert.

Poincaré algebra in three dimensions

Poincaré algebra in $d=3\left(M_{a}=\frac{1}{2} \epsilon_{a b c} M^{b c}\right)$:

$$
\left[M_{a}, M_{b}\right]=\epsilon_{a b}^{c} M_{c}, \quad\left[M_{a}, P_{b}\right]=\epsilon_{a b}^{c} P_{c}, \quad\left[P_{a}, P_{b}\right]=0
$$

can be realised as:

$$
M_{a}=L_{a} \otimes \mathcal{I}, \quad P_{a}=i L_{a} \otimes \mathcal{J}
$$

where

$$
\mathcal{I}^{2}=\mathcal{I}, \quad \mathcal{I} \mathcal{J}=\mathcal{J} \mathcal{I}=\mathcal{J}, \quad \mathcal{J}^{2}=0
$$

and

$$
\left[L_{a}, L_{b}\right]=\epsilon_{a b}^{c} L_{c}
$$

$$
L_{a} \in \mathfrak{s u}(1,1) \sim \mathfrak{s l}(2, R) \sim \mathfrak{s o}(1,2)
$$

Associative extension of $3 d$ Poincaré

Extending $\mathfrak{s u}(1,1)$ to $\mathfrak{u}(1,1)$ adding a unit element,

$$
L_{a} L_{b}=\frac{1}{2} \epsilon_{a b}^{c} L_{c}+\frac{1}{4} \eta_{a b} \mathbf{I}_{2},
$$

we can extend Poincaré to associative algebra:

$$
\mathfrak{A}=\mathfrak{u}(1,1) \otimes a=\left\langle L_{a} \otimes \mathcal{I}, L_{a} \otimes \mathcal{J}, \mathbf{I}_{2} \otimes \mathcal{I}, \mathbf{I}_{2} \otimes \mathcal{J}\right\rangle
$$

which can be multiplied by $\mathfrak{u}(N)$ colour algebra:

$$
\operatorname{cPoin}_{3}=\mathfrak{A} \otimes \mathfrak{u}(N)
$$

Coloured Poincaré algebra

$$
\operatorname{cPoin}_{3}=\mathfrak{u}(N, N) \Subset_{\text {adj }} \mathfrak{u}(N, N)
$$

Coloured Poincaré generators

Coloured Lorentz:

$$
M_{a}^{\widehat{I}}=\mathrm{i} L_{a} \otimes \mathcal{I} \otimes T^{\widehat{I}}, \quad N^{\widehat{I}}=\mathbf{I}_{2} \otimes \mathcal{I} \otimes T^{\widehat{I}}
$$

Coloured Translations:

$$
P_{a}^{\widehat{I}}=L_{a} \otimes \mathcal{J} \otimes T^{\widehat{I}}, \quad Q^{\widehat{I}}=\mathrm{i} \mathbf{I}_{2} \otimes \mathcal{J} \otimes T^{\widehat{I}}
$$

Coloured Lorentz algebra $\mathfrak{u}(N, N)$

Generators

Coloured rotations: $M_{0}^{\widehat{I}}=\left(M_{0}, M_{0}^{I}\right)$,
Coloured boosts: $M_{1}^{\widehat{I}}=\left(M_{1}, M_{1}^{I}\right), M_{2}^{\widehat{I}}=\left(M_{2}, M_{2}^{I}\right)$ Internal rotations: $N^{\widehat{I}}=\left(N, N^{I}\right)$

N is the central element

Commutators

$$
\begin{gathered}
{\left[M_{a}^{\widehat{I}}, M_{b}^{\widehat{J}}\right]=\frac{1}{2} \varepsilon_{a b}^{c} \widehat{d}^{\widehat{I} \widehat{J}} \widehat{K}_{c}^{\widehat{K}}-\frac{1}{4} \eta_{a b} \widehat{f}^{\widehat{I J}} \widehat{K} N^{\widehat{K}},} \\
{\left[M_{a}^{\widehat{I}}, N^{\widehat{J}}\right]=\widehat{f}^{\widehat{I} \widehat{K}} M_{a}^{\widehat{K}}, \quad\left[N^{\widehat{I}}, N^{\widehat{J}}\right]=\widehat{f}^{\widehat{I} \widehat{J}} \widehat{K}^{\widehat{K}}}
\end{gathered}
$$

Coloured Translations

Translations

Spacetime: $P_{a}^{\widehat{I}}=\left(P_{a}, P_{a}^{I}\right)$, internal: $Q^{\widehat{I}}=\left(Q, Q^{I}\right)$

Commutators

Lorentz with Translations:

$$
\begin{gathered}
{\left[M_{a}^{\widehat{I}}, P_{b}^{\widehat{J}}\right]=\frac{1}{2} \varepsilon_{a b}^{c} \widehat{d}^{\widehat{I} \widehat{J}} \widehat{K}_{c}^{\widehat{K}}-\frac{1}{4} \eta_{a b} \widehat{f}^{\widehat{I} \widehat{K}} Q^{\widehat{K}},} \\
{\left[M_{a}^{\widehat{I}}, Q^{\widehat{J}}\right]=\widehat{f^{\widehat{I}}} \widehat{\widehat{K}} P_{a}^{\widehat{K}},} \\
{\left[N^{\widehat{I}}, P_{a}^{\widehat{J}}\right]=\widehat{f}^{\widehat{I} \widehat{K}} P_{a}^{\widehat{K}}, \quad\left[N^{\widehat{I}}, Q^{\widehat{J}}\right]=\widehat{f}^{\widehat{I} \widehat{K}} Q^{\widehat{K}},}
\end{gathered}
$$

Translations:

$$
\left[P_{a}^{\widehat{I}}, P_{b}^{\widehat{J}}\right]=0, \quad\left[P_{a}^{\widehat{I}}, Q^{\widehat{J}}\right]=0, \quad\left[Q^{\widehat{I}}, Q^{\widehat{J}}\right]=0
$$

Coloured Minkowski Gravity

Remove the center of the Coloured Poincaré (N, Q)

$$
\begin{gathered}
M_{a}^{\widehat{I}}=\left(M_{a}, M_{a}^{I}\right), \quad N^{I}, \quad P_{a}^{\widehat{I}}=\left(P_{a}, P_{a}^{I}\right), \quad Q^{I} \\
\left(M_{a}, M_{a}^{I}, N^{I}\right) \in \mathfrak{s u}(N, N)
\end{gathered}
$$

Action

$$
\begin{gathered}
S=\frac{\kappa}{4 \pi} \int_{M_{3}} \operatorname{Tr}\left(\mathcal{A} \wedge \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right), \\
\mathcal{A} \in \mathfrak{s u}(N, N) \biguplus_{\text {adj }} \mathfrak{s u}(N, N)
\end{gathered}
$$

The bilinear form uniquely fixed by requiring the gravity to be Einstein-Hilbert.

Massive Coloured Particle action - nonlinear realisation

Reference momentum

$$
P_{a}=m \delta_{a}^{0}, \quad P_{a}^{I}=0, \quad Q^{I}=0
$$

The little group
The stability group of this momentum is span by:

$$
\left(M_{0}, \quad M_{0}^{I}, \quad N^{I}\right) \in \mathfrak{u}(1) \oplus \mathfrak{s u}(N) \oplus \mathfrak{s u}(N)
$$

Massive Coloured Particle action - nonlinear realisation

Reference momentum

$$
\widehat{\mathbb{P}}=m\left(\begin{array}{cc}
\mathrm{i} \mathbf{I} & 0 \\
0 & -\mathrm{i} \mathbf{I}
\end{array}\right)
$$

Boost elements
The elements of the factor group

$$
G / H=S U(N, N) /(U(1) \otimes S U(N) \otimes S U(N))
$$

are of the form:

$$
b=\exp \left[\frac{1}{2}\left(\begin{array}{cc}
0 & \mathbf{V}^{+} \\
\mathbf{V}^{-} & 0
\end{array}\right)\right], \quad \text { with } \quad\left(\mathbf{V}^{+}\right)^{\dagger}=\mathbf{V}^{-}
$$

Massive Coloured Particle action - nonlinear realisation

Reference momentum

$$
\widehat{\mathbb{P}}=m\left(\begin{array}{cc}
\mathrm{i} \mathbf{I} & 0 \\
0 & -\mathrm{i} \mathbf{I}
\end{array}\right)
$$

The orbit of the reference momentum

$$
b \widehat{\mathbb{P}} b^{-1}=m\left(\begin{array}{ll}
\mathrm{i} \cosh \sqrt{\mathbf{V}^{+} \mathbf{V}^{-}} & -\mathrm{i} \frac{\sinh \sqrt{\mathbf{V}^{+} \mathbf{V}^{-}}}{\sqrt{\mathbf{V}^{+} \mathbf{V}^{-}} \mathbf{V}^{+}} \\
\mathrm{i} \mathbf{V}^{-} \frac{\sinh \sqrt{\mathbf{V}^{+} \mathbf{V}^{-}}}{\sqrt{\mathbf{V}^{+} \mathbf{V}^{-}}} & -\mathrm{i} \cosh \sqrt{\mathbf{V}^{-} \mathbf{V}^{+}}
\end{array}\right)
$$

Covariant equation

$$
\mathbb{P}^{2}+m^{2} \mathbb{I}=0
$$

Coloured Particle

Lagrangian

$$
L=\frac{1}{2 N} \operatorname{Tr}\left[\dot{\mathbb{X}} \mathbb{P}+\mathbb{L}\left(\mathbb{P}^{2}+m^{2} \mathbb{I}\right)\right]
$$

Semisimple Orbits

The solutions of the covariant equation $\mathbb{P}^{2}+m^{2} \mathbb{I}=0$ are parameterized by diagonal matrices (up to $\mathfrak{s u}(N, N)$ rotations)

$$
\widehat{\mathbb{P}}_{\ell}=m \operatorname{diag}(\underbrace{i, \ldots, i}_{\ell}, \underbrace{-i, \ldots,-i}_{N-\ell}, \underbrace{i, \ldots i}_{N-\ell}, \underbrace{-i, \ldots,-i}_{\ell})
$$

There are $N+1$ orbits: $\ell=0,1, \ldots, N$
For $N=1$, two orbits: positive and negative energy particles.

Coloured Particle variations

Massless coloured particle action

$$
S=\frac{1}{N} \int d t \operatorname{Tr}\left[\mathbb{P} \dot{\mathbb{X}}+\mathbb{L} \mathbb{P}^{2}\right]
$$

AdS Coloured Particle action

$$
S=\frac{1}{N} \int d t \operatorname{Tr}\left[\mathbb{P} \dot{\mathbb{X}}+\mathbb{L}\left(((1-\mathbb{X}) \mathbb{P}(1+\mathbb{X}))^{2}+m^{2} \mathbb{I}\right)\right]
$$

Coloured Minkowski space

Coloured Minkowski point

$$
\mathbb{X}=x^{a} P_{a}+x_{I}^{a} P_{a}^{I}+y_{I} Q^{I}
$$

Coloured Poincaré transformations

Lie algbra element $\Lambda=\mathbb{O}+\mathbb{A}$ with

$$
\mathbb{O}=\underbrace{\omega^{a} M_{a}+\omega_{I}^{a} M_{a}^{I}+\sigma_{I} N^{I}}_{\text {coloured Lorentz }}, \quad \mathbb{A}=\underbrace{\alpha^{a} P_{a}+\alpha_{I}^{a} P_{a}^{I}+\beta_{I} Q^{I}}_{\text {coloured translations }}
$$

$$
\delta_{\Lambda} \mathbb{X}=[\mathbb{O}, \mathbb{X}]+\mathbb{A}
$$

Coloured Minkowski space

Coloured Minkowski point

$$
\mathbb{X}=x^{a} P_{a}+x_{I}^{a} P_{a}^{I}+y_{I} Q^{I}
$$

Coloured Poincaré transformations

$$
\begin{array}{r}
\delta_{\Lambda} x^{a}=\varepsilon_{b c}{ }^{a} \omega^{b} x^{c}+\frac{1}{N} \delta^{I J} \varepsilon_{b c}{ }^{a} \omega_{I}^{b} x_{J}^{c}+\alpha^{a}, \\
\delta_{\Lambda} x_{I}^{a}=\varepsilon_{b c}{ }^{a} \omega^{b} x_{I}^{c}+\varepsilon_{b c}{ }^{a} \omega_{I}^{b} x^{c}+\frac{1}{2} \varepsilon_{b c}{ }^{a} d^{J K}{ }_{I} \omega_{J}^{b} x_{K}^{c} \\
+f^{J K}{ }_{I} \omega_{J}^{a} y_{K}-f^{J K}{ }_{I} \sigma_{J} x_{K}^{a}+\alpha_{I}^{a}, \\
\delta_{\Lambda} y_{I}=-\frac{1}{4} \eta_{a b} f^{J K}{ }_{I} \omega_{J}^{a} x_{K}^{b}-f^{J K}{ }_{I} \sigma_{J} y_{K}+\beta_{I} .
\end{array}
$$

Distance in Coloured Minkowski

A metric on coloured Minkowski space that is invariant under coloured Lorentz transformations is given by

$$
\frac{1}{2 N} \operatorname{Tr}\left(\mathbb{X}^{2}\right)=x^{a} x^{b} \eta_{a b}+\frac{1}{N} x_{I}^{a} x_{J}^{b} \eta_{a b} \delta^{I J}-\frac{1}{N} y_{I} y_{J} \delta^{I J}
$$

where $\eta_{a b}$ is the $(-++)$ Minkowski metric and $\delta^{I J}$ the $S U(N)$ invariant metric.

Coloured Particle action

Integral of the line element - "geometric action"

$$
S_{\mathrm{geo}}=m \int d \tau \sqrt{-\operatorname{Tr}\left[\dot{\mathbb{X}}^{2}\right]}
$$

In the Hamiltonian form:

$$
S_{g e o}=\frac{1}{2 N} \int d \tau \operatorname{Tr}\left[\dot{\mathbb{X}} \mathbb{P}+e\left(\mathbb{P}^{2}+m^{2} \mathbb{I}\right)\right]
$$

Compare to the NLR action

$$
S_{N L R}=\frac{1}{2 N} \int d \tau \operatorname{Tr}\left[\dot{\mathbb{X}} \mathbb{P}+\mathbb{L}\left(\mathbb{P}^{2}+m^{2} \mathbb{I}\right)\right]
$$

Outlook

What next?

- Coloured Maxwell algebra, particle in Yang-Mills background.
- Field theory of Coloured Particles - CG with matter.
- Extended objects?
- Higher dimensions?

Thank you for your attention!

[^0]: Known examples with three of these properties
 2,3,4: Einstein-Hilbert Gravity, SUGRA.
 1,3,4: Vasiliev's Higher Spin Gravity.
 1,2,4: Conformal Gravity (and much more).
 1,2,3: Higher Spin (Chern-Simons) Gravities in 3d.

