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Motivations

•  Higher-spin	gravity	=	dynamics	of	an	infinite	mul9plet	of	gauge	fields	of	all	spins,	
conjectured	to	be	holographic	dual	to	free	CFT.		

•  A	system	of	intermediate	complexity	between	the	full	String	Theory	and	SUGRA	
+	higher-deriva9ve	correc9ons:	very	constrained,	due	to	infinite-dimensional	
local	symmetries,	yet	quite	far	from	ordinary	field	theories,	since	

Ø  Order	of	deriva9ves	in	a	vertex	grows	linearly	with	the	spins	involved	à	
expected	to	contain	non-local	interac,ons	(among	physical	spin-s	fields)	

Ø  All	fields	are	on	equal	foo9ng.	Concepts	of	the	standard	riemannian	
geometry	lose	meaning	as	they	are	not	HS-invariant.	A	gauge-invariant	
descrip9on	of	bulk	dynamics	requires	developing	and	understanding	
proper	HS	invariants,	leading	to	a	stringy	generaliza9on	of	geometry.	



3 

Motivations

	
•  Remarkable	that	one	can	s9ll	control	many	features	of	the	theory,	essen9ally	

due	to	the	infinite-dimensional	symmetry	+	compact	form	of	the	non-linear	eqs.	
	
•  As	non-locality	is	expected	in	some	degree,	certain	issues	(allowed	field	

redefini9ons,	large	vs	small	gauge	transforma9ons,	...)	seem	hard	to	tackle	at	least	by	
standard	means.	The	language	of	spin-s	component	fields	is	not	the	most	
appropriate	one	to	address	such	ques9ons	[and	the	very	concept	only	makes	sense	
in	weak	field	regime].	

	
•  There	are	indica9ons	(from	study	of	cubic	and	quar9c	ver9ces,	of	singulari9es	of	bh-like	

solu9ons,	...)	that	much	insight	is	to	be	gained	by	addressing	currently	open	
ques9ons	within	the	natural	framework	of	the	eqs.,	in	terms	of	HS-covariant	
variables	and	corresponding	HS-invariant	observables.		

	
																										(Vasiliev;	Didenko,	Gelfond,	Korybut,	Vasiliev;	Sezgin,	Sundell;	C.I.,	Sundell;			

Boulanger,	Sundell;	Colombo,	Sundell;	Didenko,	Skvortsov;	Bonezzi,	Boulanger,	De	Filippi,	Sundell...) 
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4D bosonic Vasiliev’s equations

§  Vasiliev’s	eqs	=	genera9ng	system	for	nonlinear	eqs	involving	gauge	fields	of	all	spins	.		
	
Formulated	in	terms	of	master-fields	on	correspondence	space,	locally X x Z x Y :
	
	
	
	
	
	

§  Oscillators																																																																														à		sp(4,R)	quartets	

	
§  Y   à		fibre:				spin-s	generators	=	degree-2(s-1)	totally	symmetric	monomials		
	

gauge	fields	of	all	spins	+	auxiliary	
Weyl	tensors	and	their	deriva9ves	à	local	dof	

Z-space	connec9on,	no	extra	local	dof	
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§  Full	equa9ons:	

	
	

§  Inner	kleinian	operator	κ:	

§  Z-oscillators	à	auxiliary,	non-commuta9ve	coordinates.	Equa9ons	solve	Z-contrac9ons		
in	terms	of	curvatures	of	the	physical	fields,	giving	rise	to	an	infinite	tail	of	gauge-	
invariant	nonlinear	interac9ons.	
Physical	fluctua9ons	contained	in	ini9al	data	(integra9on	constants	for	Z-eqs)	
	

4D bosonic Vasiliev equations

^ 

Z-differen9al	
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Perturbative expansion on AdS

§  Simplest	vacuum	solu9on	à		AdS	space9me,	

	
with	U(0)		a	flat	connec9on	represented	via	a	gauge	func9on	L(x|Y)	=	AdS4	coset	
	element	.		
	

§  Set	up	perturba9ve	expansion	around	AdS	:	eqs.	with	at	least	one	component	on	Z		
lend	themselves	to	be	integrated	with	integra9on	constants	Ĉ	(x,Ŷ)	and	Ŵ	(x,Ŷ)		
itera9vely	in	an	expansion	in	curvatures	(contained	in	Ĉ		)	
	
	
	

§  Solve	Z-dependence		via	equa9ons	of	the	form	

via	a	resolu9on	operator	q*	
	

gauge	parameter 
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Orderings

	
§  The	perturba9ve	analysis	is	performed	in	a	given	ordering	prescrip9on:	this	facilitates		

wri9ng	down	a	concrete	integral	operator		q*	and	the	extrac9on	of	physical	fields	
from	the	genera9ng	func9ons.	
	

§  Linear	inver9ble	maps	between	spaces	of	func9ons	of	commu9ng	variables	(symbols)	and		
operators	(in	a	given	ordering)	
	
	
	
	

	
§  Operator-symbol	correspondence	induces	algebra	isomorphism	

	with	the	star	product	(concretely	realized	on	symbols	via	a	convolu9on)	implemen9ng	
the	non-commuta9ve	operator	product	on	symbols.		
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Orderings

	
§ 					Usual	choice:	normal	ordering	wrt	Y-Z	and	Y+Z,	in	which	case		

Y	and	Z	are	maximally	entangled	(nontrivial	contrac9ons	from	Y	★	Z)	and	the	total	
Klein	operator	is	regular,		
	
	

§ 					Weyl	ordering	on	total	space	(Y,	Z)	disentangles	Y	and	Z	

	and	Klein	operator	becomes	a	delta	func9on	
	
	
	

§ 					Studied	extension	of	the	perturba9ve	analysis	to	a	family	of	orderings	interpola9ng		
between	normal	and	Weyl		

	(Didenko,	Gelfond,	Korybut,	Vasiliev;			
De	Filippi,	C.I.,	Sundell)			
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§  In	terms	of	symbols	now	

and	a	par9cular	solu9on	to	
	
	
can	be	obtained	by	homotopy-contrac9ng	along	Z	(E	:=	Z	�	∂/∂Z)	shided	by	any	Z-
independent	vector	Ξ	
	
	
	
	
	

§  Ξ	=	0	is	the	simplest	choice		à			“standard”	perturba9ve	scheme.	

§  Solu9ons	obtained	via	two	different	contrac9ng	homotopies	differ	by	gauge	choices		
and	field	redefini9ons.	

	
	
	

	

Contracting homotopy

On boundary conditions and spacetime/fibre duality in Vasiliev’s HS gravity Carlo Iazeolla

i.e.,

qΦ+[V,Φ]π = 0 −→ Φ =C(x,Y )+q∗ (−[V,Φ]π ) , (3.20)

qV +V ⋆V +Φ⋆ J = 0 −→ V = qε +q∗ (−V ⋆V −Φ⋆ J) , (3.21)

qU +dV +[U,V ]⋆ = 0 −→ U =W (x,Y )+q∗ (−[U,V ]⋆−dV ) , (3.22)

where ε = ε(x,Z,Y ) is a gauge parameter and q∗ is a resolution operator, a formal inverse of q
giving rise to a particular solution. Φ and V are assumed to be of at least first order in the curvatures
contained in C, while the zeroth order term in U corresponds to the background AdS connection
(3.3)-(3.4),

Φ = ∑
n≥1

Φ(n) , Φ(1) =C(1)(x,Y )

V = ∑
n≥1

V (n)

U = ∑
n≥0

U (n) , U (0) = Ω = L−1 ⋆dL .

Note that there are in principle initial data C(n)(x,Y ) emerging at every perturbative step, as solu-
tions to the homogenous equation at order n.

At every perturbative order, the Z-space equations have the typical form q f = g, with f a form
field, and their general solution can thus be written as

f = q∗Jg+qh+ c , (3.23)

where h is a gauge function (or form), c is an element of the q-cohomology8 H(q)⊂ Ω(Z4) valued
in Ω(X4)⊗A (Y4), that is, c = P f , P : Ω(Z4)→ H(q) , P2 = P , and q∗ is some homotopy-
contraction operator that gives a resolution of the identity [54]

qq∗+q∗q = 1−P . (3.24)

The initial dta (3.19), encoding the local degrees of freedom of the system, are in fact such q-
cohomology projections onto H[0](q). A particular form of q∗ can be obtained by contracting along

the Euler vector field E⃗ := Zα∂⃗ Z
α shifted by a vector V⃗ ,

q(E+V)∗g = ıE⃗+V⃗

∫ 1

0

dt
t

g(x, tZ +(t −1)V ;dx, tdZ;Y ) , (3.25)

where, as usual, ıE⃗+V⃗ := (Zα +V α) ∂
∂dZα and V α is Z-independent. Solutions obtained via two

different contracting homotopies differ by gauge choices and field redefinitions [20, 22]. Given a
decomposition using a specific choice (q(A)∗,P(A)), we shall refer to the projection

f (A) := q(A)∗g+ c(A) ≡
(

q(A)∗q+P(A)
)

f , (3.26)

of f obtained by setting h(A) to zero, as the twistor space A-gauge. Note that two such gauges may
be physically inequivalent, as the gauge function may carry physical degrees of freedom (arising
via boundaries or other topological defects) [38].

8Actually H[0](q) is the only cohomology that is relevant for the (duality unextended) Vasiliev system, see [38] and
references therein.
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(Gelfond,	Vasiliev) 
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§  The	eqs.	with	at	least	one	component	on	Z	can	be	integrated	in	terms	of	the	original		

dof	in	Φ|Z=0	(x,Y)	(with	no	cohomology	for	Z-space	1-forms)	
	

	

	
§ 			Simplest	gauge	choice:	solving	the	Z-space	eqs.	with	qε	=	0	,	i.e.,	Vasiliev	gauge	
	
	

§  One	is	then	led	with	the	free	field	equa9ons	on	X x Y :		

Standard perturbative analysis

gauge	fields	in	the	1-form	«glued»	to		
local	dof	in	the	0-form	

KG	+	all	spin-s	Bargmann-Wigner	eqs.	
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§  Possible	in	principle	to	proceed	to	higher	orders	and	give	the	Z-dependent	fields	
itera9vely	in	terms	of	non-linear	couplings	involving	the	original	dof	in	Φ|Z=0:	
	
	
	
	
		
On-shell	the	infinitely	many	Z-contrac9ons	turn	into	an	infinite	expansion		
in	deriva9ves	of	arbitrarily	high	order	à	in	a	generic	frame,	one	has	a	non-local,		
Born-Infeld-like	tail	at	every	fixed	order	in	weak	fields.		
	

§  Inser9ng	the	perturba9ve	solu9ons	for	U	and	Φ	of	the	Z-space	eqs.		into	the	pure		
space9me	eqs.		and	selng	Z=0,	one	gets	
	

Standard perturbative analysis
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§  A	condi9on	for	the	interpreta9on	of	the	W	and	C	as	genera9ng	func9ons	of	gauge	fields	
	and	Weyl	tensors	of	all	spins	is	that	they	be	real-analy,c	in	Y.		
In	standard	perturba9ve	analysis	this	is	ensured	by	requiring	that	all	master	fields		
be	(formal)	polynomials	in	Y	and	Z	everywhere	on	space9me	.	
		
Known	interes9ng	solu9ons	force	us	to	considerably	soden	this	condi9on.	
	
	

§  Main	disadvantages	of	standard	perturba9ve	scheme:		
	

Ø  wri9ng	down	ver9ces	gets	harder	and	harder		
Ø  non-locali9es	already	at	cubic	order	
Ø  unclear	how	to	select	different	solu9on	spaces	(imposing	b.c.)	
Ø  how	to	fix	gauge	ambigui9es	beyond	first	order?	

§  Shided	homotopies	studied	to	improve	locality	of	ver9ces.	Cubic	ver9ces	shown	to	admit	
	local	form.		Certain	types	of	quar9c	ver9ces	admit	spin-local	form	with	shid		
Ξα	=	β	∂/∂yα	in	the	limit	β	-->	-∞	.		
	

Standard perturbative analysis

(Didenko,	Gelfond,	Korybut,	Vasiliev)	

(Didenko,	Vasiliev;		
C.I.,	Sundell;	
Aros,	C.I.,	Sundell,	Yin)	

(Boulanger,	Kessel,	Skvortsov,	Taronna)	
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§  Worth	exploring	modifica9ons	to	the	tradi9onal	perturba9ve	scheme.	
Some	sugges9on,	also	exploi9ng	shided	contrac9ng	homotopies,	came	independently	
from	the	study	of	exact	solu9ons.	

	
	

§  In	order	to	overcome	some	of	the	problems	of	the	simplest	perturba9ve	approach,		
it	is	worth	lelng	go	of	some	assump9ons	of	the	standard	scheme	and	exploring		
a	shid	Ξα	=	β	∂/∂yα	in	the	limit	β	à	1,	similar	to	solving	eqs.	by	separa9ng		
non-commuta9ve	Y	and	Z	variables.	
	

§  Price	to	pay:	dealing	with	some	irregular	star-product	elements	in	the	intermediate	
steps	(requiring	some	regulariza9on).		

§  Advantage:	perturba9ve	series	much	easier	(can	be	pushed	to	all	orders)	in	the	new		
frame.	Contact	with	the	“physical”	gauge	is	made	by	building	a	gauge	transforma9on	
order	by	order,	which	facilitates	imposing	boundary	condi9ons.		

Alternative schemes

(C.I.,	P.	Sundell)	
(D.	De	Filippi,	C.I.,	P.	Sundell) 
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§  A	different	organiza9on	of	the	perturba9ve	expansion	facilitates	pushing	the		
solu9on	to	higher	orders	(some9mes	to	all	orders).			
	

§  New	perturba9ve	scheme	based	on	two	observa9ons:		

1.  At	first	order,	the	equa9ons	for	Φ	are	

2.  The	source	term	that	triggers	the	non-linear	correc9ons	can	be	rewriten	as			

à	Organizing	the	perturba9ve	expansion	in	powers	of		Ψ	and	keeping	the	Y	and	
Z	dependence	factorized,	one	can	solve	for	the	Z-dependence	universally.	
	

§  To	do	that,	use	a	factorized	contrac9ng	homotopy,	s.t.		

§  Equivalently:	solve	with	standard	homotopy	in	Weyl	order,	

Factorized perturbative scheme
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§  The	solu9on	at	1st	order	:		
	

which	can	be	gauge-fixed	to	0	(as	the	1-form	is	not	glued	to	the	Weyl	0-form).	

Factorized expansion scheme

On boundary conditions and spacetime/fibre duality in Vasiliev’s HS gravity Carlo Iazeolla

is equivalent to the case β = 1 of the shifted contracting homotopies studied in [23]9. In terms of
q(E+i∂Y )∗, then, the solution to Eq.(3.29),

qV (1) =−Ψ(1) ⋆ jz − Ψ̄(1) ⋆ j̄z , (3.64)

is given by
V (1) =−Ψ(1) ⋆q(E)∗ jz − Ψ̄(1) ⋆q(E)∗ j̄z . (3.65)

where property (3.63) was used. Since D(0)
ad annihilates Ψ(1) and Ψ̄(1), we can rewrite Eq.(3.30) as

qU (1) = Ψ(1) ⋆dq(E)∗ jz + Ψ̄(1) ⋆dq(E)∗ j̄z . (3.66)

Assuming that q(E)∗ jz and q(E)∗ j̄z are x-independent (which is possible, see (3.72)), we then have

U (1) =W (1) , (3.67)

which we can gauge-fix to zero by virtue of Eq.(3.31).
Fixing gauges and proceeding to higher orders, one can recursively prove that the solution

Φ =
∞

∑
n=1

Φ(n) , Φ(n) = δn,1

(
Ψ(1) ⋆κy + Ψ̄(1) ⋆ κ̄y

)
, (3.68)

V =
∞

∑
n=1

V (n) , V (n) = (Ψ(1))⋆n ⋆ vn(z)+ (Ψ̄(1))⋆n ⋆ v̄n(z̄) , (3.69)

U =
∞

∑
n=0

U (n) , U (n) = δn,0 Ω , (3.70)

is actually a formal exact solution to the Vasiliev equations. Note that, with this choice of homotopy
contraction and gauges, Φ (equivalently, Ψ) is first-order exact, U remains uncorrected (up to pure
gauge terms), identical to its vacuum value (3.3), and the Z-dependence is solved in a universal
manner.

For (3.68)-(3.70) to be considered an actual solution, for a given initial datum Ψ′(Y ), we
should be able to make sense of the resulting distributions in twistor space (of q(E)∗ jz, in particular)
and the star products that build up the solutions, (Ψ(1))⋆n as well as (Ψ(1))⋆n⋆vn must be finite. Note
that, in the standard perturbative scheme, this is not a problem because one assumes that all master
fields are formal polynomials, κ = eiyα zα is regular in normal order, and one can prove [14, 59] that
all functions obtained by solving in such perturbative scheme are also regular. In solving easily with
q(E+i∂Y )∗, instead, the resulting delta function source term induces a distributional behaviour of the
vn(z). Moreover, as found in [30, 31, 32, 34, 36, 37, 39, 40, 41, 60], many interesting solutions
to the free and/or fully non-linear equations are actually in correspondence, via unfolding, with

9In fact, β → 1 is the opposite limit of the β →−∞ one that was preferred there, as it guarantees spin-locality of
the vertices examined in that work. In [23] it was also shown how all β -shifts in q∗, with −∞ < β < 1 can be related to
reorderings, parameterized by β . The main reason why the β = 1 case was not used in [23] is precisely that, in Weyl
ordering, the source term of the Vasiliev becomes a distribution, which leads to divergencies in the solution for V . As
we shall recall later on in this work, however, in [38] said divergencies are interpreted as reconstructing distributions in
twistor space, and the latter are handled, as elements of an enlarged star-product algebra, by means of a regularization
scheme. Then, in performing Step 2. of our perturbative scheme, the singularities are shown to be harmless, at least at
first order, in the gauge in which one reads off the Fronsdal fields, as they are cohomologically trivial [38].
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is equivalent to the case β = 1 of the shifted contracting homotopies studied in [23]9. In terms of
q(E+i∂Y )∗, then, the solution to Eq.(3.29),

qV (1) =−Ψ(1) ⋆ jz − Ψ̄(1) ⋆ j̄z , (3.64)

is given by
V (1) =−Ψ(1) ⋆q(E)∗ jz − Ψ̄(1) ⋆q(E)∗ j̄z . (3.65)

where property (3.63) was used. Since D(0)
ad annihilates Ψ(1) and Ψ̄(1), we can rewrite Eq.(3.30) as

qU (1) = Ψ(1) ⋆dq(E)∗ jz + Ψ̄(1) ⋆dq(E)∗ j̄z . (3.66)

Assuming that q(E)∗ jz and q(E)∗ j̄z are x-independent (which is possible, see (3.72)), we then have

U (1) =W (1) , (3.67)

which we can gauge-fix to zero by virtue of Eq.(3.31).
Fixing gauges and proceeding to higher orders, one can recursively prove that the solution

Φ =
∞

∑
n=1

Φ(n) , Φ(n) = δn,1

(
Ψ(1) ⋆κy + Ψ̄(1) ⋆ κ̄y

)
, (3.68)

V =
∞

∑
n=1

V (n) , V (n) = (Ψ(1))⋆n ⋆ vn(z)+ (Ψ̄(1))⋆n ⋆ v̄n(z̄) , (3.69)

U =
∞

∑
n=0

U (n) , U (n) = δn,0 Ω , (3.70)

is actually a formal exact solution to the Vasiliev equations. Note that, with this choice of homotopy
contraction and gauges, Φ (equivalently, Ψ) is first-order exact, U remains uncorrected (up to pure
gauge terms), identical to its vacuum value (3.3), and the Z-dependence is solved in a universal
manner.

For (3.68)-(3.70) to be considered an actual solution, for a given initial datum Ψ′(Y ), we
should be able to make sense of the resulting distributions in twistor space (of q(E)∗ jz, in particular)
and the star products that build up the solutions, (Ψ(1))⋆n as well as (Ψ(1))⋆n⋆vn must be finite. Note
that, in the standard perturbative scheme, this is not a problem because one assumes that all master
fields are formal polynomials, κ = eiyα zα is regular in normal order, and one can prove [14, 59] that
all functions obtained by solving in such perturbative scheme are also regular. In solving easily with
q(E+i∂Y )∗, instead, the resulting delta function source term induces a distributional behaviour of the
vn(z). Moreover, as found in [30, 31, 32, 34, 36, 37, 39, 40, 41, 60], many interesting solutions
to the free and/or fully non-linear equations are actually in correspondence, via unfolding, with

9In fact, β → 1 is the opposite limit of the β →−∞ one that was preferred there, as it guarantees spin-locality of
the vertices examined in that work. In [23] it was also shown how all β -shifts in q∗, with −∞ < β < 1 can be related to
reorderings, parameterized by β . The main reason why the β = 1 case was not used in [23] is precisely that, in Weyl
ordering, the source term of the Vasiliev becomes a distribution, which leads to divergencies in the solution for V . As
we shall recall later on in this work, however, in [38] said divergencies are interpreted as reconstructing distributions in
twistor space, and the latter are handled, as elements of an enlarged star-product algebra, by means of a regularization
scheme. Then, in performing Step 2. of our perturbative scheme, the singularities are shown to be harmless, at least at
first order, in the gauge in which one reads off the Fronsdal fields, as they are cohomologically trivial [38].
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§  κz	distribu9onal	à		q(E)*jz		distribu9onal.	Requires	an	integral/limit	representa9on,	

§  Source	term	is	1st	order	in	Ψ:	higher	order	for	V	are		
with	
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§  Fixing	gauges,	one	can	push	the	solu9on	to	all	orders	in	the	form	
	
	
	
	
	
	
	
	
	

§  A	large	space	of	exact	solu9ons	(HS	black	holes,	HSBH	+	massless	scalar,	FLRW-like,…)		
	built	this	way.			Symmetries	and	b.c.	encoded	in	the	associa9ve	algebra	A(Y)	that		
Φ’	belongs	to	à	different	solu9on	space	are	singled	out	by	different	basis	func9ons		
(or	distribu9ons)	of	Y	on	which	one	expands	C’	(i.e.,	Ψ’)	.		
	

§  Factorized	scheme	encodes	a	(formal)	solu9on	space	in	which	Φ	is	first-order	exact,			
and	the	Z-dependence	is	solved	in	a	universal	way		
à 		gives	a	systema9c	procedure	to	non-linearly	deform	solu9ons	of	the	KG	and		

Bargmann-Wigner	eqs.	into	solu9ons	of	the	full	Vasiliev	eqs.		
	

Factorized expansion scheme

(C.I.,	P.	Sundell,;		
D.De	Filippi,	C.I.,	P.	Sundell)	
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Comments and observations

	

§  Actual	solu9ons	must	sa9sfy:		
1. 	The	star-products	(Ψ)★k		(and	(Ψ)★k	★ v(z)	)	must	be	finite	à	condi9ons	on	A(Y)	
2. 	Observables	should	be	finite		

Extra	condi9ons	on	A(Y)	from	imposing	boundary	condi9ons	
	

§  Price	for	expanding	in	factorized	form	(WO):		v(k)(z)	are	distribu9ons,	and	so	is	V	in	WO.		
	
à However,	one	only	cares	that	genera9ng	func9ons	of	physical	fields	are	regular	

ader	taking	the	star	products	(NO).		
	

§  Moreover,	Fronsdal	fields	can’t	be	extracted	in	this	frame	as	U	remains	not	glued	to	
C	.		In	order	to	interpret	the	solu9on	as	a	configura9on	of	deformed	Fronsdal	theory		
à	transform	to	a	frame	with	non-trivial	Chevalley-Eilenberg	cocycle.	
	

This	can	be	induced	by	modifying	the	gauge	func9on	(with	field-dependent	correc9on)		
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Fronsdal fields and…

§  Existence	of	such	H	and	regularity	of	resul9ng	W	impose	further	restric9ons	to	A(Y)			
(restric9ng	admissible	class	of	func9ons).		
	

§  Proposal:	perturba9ve	problem	moved	to	building	a	gauge	func9on	H=	H(x,z;Y)		
Ø  1st	order		will	be	determined	via	a	gauge	condi9on	
Ø  higher	orders	via	imposing	asympto9cally	AdS	b.c.	on	master	fields	
	

§  Requiring	a	non-trivial	gauge	field	sector	U(n≥1)	≠	0	that	contains	a	genera9ng				
func9on	for	Fronsdal	fields	means	finding	H(1)	such	that		
	
	
	
	
	
	
	
	

with	W	:=	(D(0)H(1))Z=0		real-analy9c	in	Y	.			
	

§  Can	be	obtained	by	imposing	relaxed	Vasiliev	gauge	
(D.De	Filippi,	C.I.,	P.	Sundell)	
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…AAdS boundary conditions

§  Inser9ng	the	expression	for	V(1,G)	in	the	gauge	condi9on	and	solving	for	H(1)	

§  Now	the	gauge	field	genera9ng	func9on	is	non-trivial,		

regular	(singulari9es	in	V	are	absorbed	by	D(0h,	i.e.	they	are	pure	gauge),	
and	glued	to	propaga9ng	dof		[	note	that	D(0)(D(0)H(1)(x,Y,Z))Z=0	≠	0!	],		
	
	
	

§  H2	has	no	impact	on	gauge	fields.	However,	it	can	be	used	to	impose	b.c.	.	
E.g.,	that	all	master	fields	reduce	asympto9cally	to	free	Fronsdal	fields	on	AdS,	

(to	match	the	usual	holographic	setup)	or,	in	fact,	linearize	asympto9cally	
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§  The	general	idea	is	to	expand	the	master	fields	(Φ,U,V	)	in	powers	of	1/r,	and	fix		
AAdS	b.c.	by	demanding	that	in	the	asympto9c	limit	the	bulk	master	fields	solve	the		
unfolded	linearized	equa9ons	(Fronsdal).	
	
This	is	nontrivial,	because	interac9ons	may	mix	different	spins	(e.g,	nonlinear	spin		
s’<	s	constructs	may		contribute	to	a	leading	1/rs+1).		
[Perturba9ve	expansion	and	asympto9c	expansion	do	not	coincide]	

	
§  Simplest	version:	use	the	residual	gauge	freedom	in	H(n≥2)	to	impose	that	asympto9cally			

free	Fronsdal	fields	=	linearized	fields,	i.e.,	in	“physical”	gauge		the	asympto9cs		
coincide	with	the	first-order	piece	of	the	bulk	solu9on.		

	
	

	
	
(	UH;C

(n),	ΦH;C
(n),	VH;C

(n)		=	constructs	of	H(n’)	and	C(n’),	n’<n,	present	for	n>1)	
		

AAdS boundary conditions
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Boundary conditions and observables

§  At	each	order	n	one	uses	the	freedom	in	H(n-1)	and	in	the	integra9on	constant	C(n)		
to	impose	AAdS	b.c.	.	
	

§  This	means	that	,	while	H	has	no	relevance	for	classical	gauge-invariant	observables,	
imposing	b.c.	leaves	nonetheless	a	trace	on	them	via	the	higher-order	correc9ons	
C(n)		,	that	will	become	n-linear	func9onals	of	C(1).		
	

§  This	mechanism	can	thus	induce	non-linear	correc9ons	to	classical	observables	like	

	
	
§  Evalua9ng	these	observables	on	bulk-to-boundary	propagators	à	boundary	correla9on		

func9ons.	Check	finiteness!		
(three-point	func9ons	computed	by	extrac9ng	Φ(2)	in	standard	frame	are	puzzling)	
	
	

§  Recently,	this	analysis	has	been	extended	to	a	family	of	M-orderings	interpola9ng		
between	NO	and	WO,	singling	out	proper	homotopy	to	extract	Fronsdal	fields.		

(Giombi,	Yin;	Colombo,	Sundell;	Boulanger,	Kessel,	Skvortsov,	Taronna)	

(D.	De	Filippi,	C.I.,	P.	Sundell,	in	prepara,on)	
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•  Vasiliev	eqs	are	formulated	in	a	language	tailored	to	peculiari9es	of	HS	and		
powerful	enough	to	try	and	understand	pressing	issues	such	as	(non-)locality		
of	interac9ons.	
Several	related	open	ques9ons:	criteria	to	establish	allowed	class	of	func9ons,	
field	redefini9ons,	role	of	ordering	prescrip9ons,	how	to	impose	b.c.	...	
	

•  Several	indica9ons	that	HS	gravity	requires	to	go	beyond	the	standard	field	theore9c	
interpreta9on	(at	the	level	of	component	fields),	which	only	makes	sense	in		
special	regimes.		
	

•  Using	different	homotopy	contrac9ons/orderings	helps	reducing	non-locality	as	well	
as	difficulty	of	perturba9ve	expansion.			
	

•  Imposing	b.c.	may	reduce	the	ambigui9es:	AAdS	b.c.	by	adjus9ng	gauge	func9on			
and	integra9on	constants	order	by	order:		interac9ons	of	bulk	master-fields	affect		
leading	order	in	asympto9c	expansion	à	correc9ons	to		integra9on	constants		
à affect	observables	!		
Computa9on	of	observables	is	the	tes9ng	ground	for	this	and	other	perturba9ve	
approaches.		

Conclusions and outlook


