Goldsone theorem for the spontaneous breakdown of spacetime symmetries

I. Kharuk, A. Shkerin

Moscow Institute of Physics and Technology, Institute for Nuclear Research RAS

Quarks 2018
Outline

1. Introduction: known peculiarities of the theories resulting from the spontaneous breakdown of spacetime symmetries

2. New results:
 - New massive Nambu-Goldstone bosons
 - Understanding the inverse Higgs phenomenon
 - Goldstone’s theorem

3. Conclusion
Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

1. Introduce coset G/H:

$$gH = e^{iP_\mu x^\mu} e^{iP_z \xi} e^{iM_z \mu \omega_\mu}$$

2. Calculate Maurer-Cartan forms:

$$g^{-1}H dg_H = iP_\mu \Omega_\mu + iP_z \Omega_z + iM_z \mu \Omega_\mu M + iM_\mu\nu \Omega_\mu\nu M$$

3. Impose inverse Higgs constraints:

$$\Omega_z P^z(\partial_\mu \xi, \omega_\mu) = 0 \implies \omega_\mu = \omega_\mu(\partial_\mu \xi)$$
Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

1. Introduce coset G/H:
$$g_H = e^{iP_\mu x^\mu} e^{iP_z \xi} e^{iM_{z\mu} \omega^\mu}$$

2. Calculate Maurer-Cartan forms:
$$g_H^{-1} dg_H = iP_\mu \Omega_P^\mu + iP_z \Omega_P^z + iM_{z\mu} \Omega_M^\mu + iM_{\mu\nu} \Omega_M^{\mu\nu}$$

3. Impose inverse Higgs constraints:
$$\Omega_P^z(\partial_\mu \xi, \omega_\mu)$$
Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

1. Introduce coset G/H: $g_H = e^{iP_\mu x^\mu} e^{iP_z \xi} e^{iM_{z\mu} \omega^\mu}$

2. Calculate Maurer-Cartan forms:

$$g_H^{-1}dg_H = iP_\mu \Omega^\mu_P + iP_z \Omega^z_P + iM_{z\mu} \Omega^\mu_M + iM_{\mu\nu} \Omega^{\mu\nu}_M$$

3. Impose inverse Higgs constraints:

$$\Omega^z_P(\partial_\mu \xi, \omega_\mu) = 0 \Rightarrow \omega_\mu = \omega_\mu(\partial_\mu \xi)$$
Open questions

→ When one should impose inverse Higgs constraints?
Open questions

→ When one should impose inverse Higgs constraints?

→ Does it cover all possible effective Lagrangians?
Open questions

→ When one should impose inverse Higgs constraints?

→ Does it cover all possible effective Lagrangians?

→ Inverse Higgs effect - a trick, an effect, a gauge choice, ... ?
New massive Nambu-Goldstone bosons

SSB pattern: \(\text{ISO}(d)_{ST} \times \text{ISO}(d)_{int} \rightarrow \text{ISO}(d)_{V} \)

The Lagrangian of the theory:

\[
\mathcal{L} = -\frac{1}{2} (\partial_i \varphi^a)^2 + \frac{1}{4} (\partial_{[i} V^a_{j]})^2 + \kappa V^i_a \partial_i \varphi^a + \frac{\lambda}{4d} (V^i_a V^a_i - dM^2_V)^2
\]

Vacuum solution:

\[
\varphi^a = \mu^2 x^a , \quad V^i_a = M \delta^i_a , \quad M = \sqrt{M^2_V - \frac{\kappa^2}{\lambda}} , \quad \mu^2 = \kappa M
\]
New massive Nambu-Goldstone bosons

SSB pattern: \(ISO(d)_{ST} \times ISO(d)_{\text{int}} \rightarrow ISO(d)_{V} \)

The Lagrangian of the theory:

\[
\mathcal{L} = -\frac{1}{2} (\partial_i \varphi^a)^2 + \frac{1}{4} (\partial_{[i} V^a_{j]})^2 + \kappa V^i_a \partial_i \varphi^a + \frac{\lambda}{4d} (V^i_a V^a_i - dM^2_V)^2
\]

Vacuum solution:

\[
\varphi^a = \mu^2 x^a, \quad V^i_a = M \delta^i_a, \quad M = \sqrt{M^2_V - \frac{\kappa^2}{\lambda}}, \quad \mu^2 = \kappa M
\]

Parametrizing Nambu-Goldstone modes:

\[
\varphi^a(x) = \mu^2 x^a + \psi^a(x), \quad V^i_a(x) = \Omega^i_a(\omega) M, \quad \Omega^i_a = \delta^i_a + \omega^i_a - \frac{1}{2} \omega^i_b \omega^b_a + ...
\]

Effective Lagrangian(s):

\[
\mathcal{L}_{\psi,A} = -\frac{1}{2} (\partial_i \psi^a)^2 + \frac{1}{4} (\partial_{[i} A^a_{j]})^2 - \frac{1}{2} \kappa^2 A^i_j A^j_i + \kappa A^i_a \partial_i \psi^a
\]
New massive Nambu-Goldstone bosons

SSB pattern: \(ISO(d)_{ST} \times ISO(d)_{int} \rightarrow ISO(d)_V \)

The Lagrangian of the theory:

\[
\mathcal{L} = -\frac{1}{2} (\partial_i \varphi^a)^2 + \frac{1}{4} (\partial_{[i} V^a_{j]})^2 + \kappa V^i_a \partial_i \varphi^a + \frac{\lambda}{4d} (V^i_a V^a_i - dM^2_V)^2
\]

Vacuum solution:

\[
\varphi^a = \mu^2 x^a, \quad V^i_a = M \delta^i_a, \quad M = \sqrt{M^2_V - \frac{\kappa^2}{\lambda}}, \quad \mu^2 = \kappa M
\]

Parametrizing Nambu-Goldstone modes:

\[
\varphi^a(x) = \mu^2 x^a + \psi^a(x), \quad V^i_a(x) = \Omega^i_a(\omega) M, \quad \Omega^i_a = \delta^i_a + \omega^i_a - \frac{1}{2} \omega^i_b \omega^b_a + ...
\]

Effective Lagrangian(s):

\[
\mathcal{L}_{\psi, A} = -\frac{1}{2} (\partial_i \psi^a)^2 + \frac{1}{4} (\partial_{[i} A^a_{j]})^2 - \frac{1}{2} \kappa^2 A^i_j A^j_i + \kappa A^i_a \partial_i \psi^a
\]

\(A^i_j \) integrated out: \(\mathcal{L}_\psi = -\frac{1}{4} \left((\partial_i \psi^a)^2 + (\partial_a \psi^a)^2 \right) \)
Applying the coset space construction

The corresponding coset space: \(g_H = e^{i\bar{P}_\mu \xi^\mu} e^{i\bar{P}_a \psi^a} e^{i\bar{M}_{ab} \omega^{ab}} \)

Covariant derivatives: \(D_\mu \psi^a = \partial_\mu \psi^a - \mu^2 \omega_\mu^a, \quad D_\mu \omega^{\lambda \sigma} \simeq \partial_\mu \omega^{\lambda \sigma} \)

The effective Lagrangian:

\[
-\frac{1}{2} (D_i \psi^a)^2 = -\frac{1}{2} (\partial_i \psi^a)^2 - \frac{1}{2} \kappa^2 A_i^a A_i^a + \kappa A_i^a \partial_i \psi^a, \quad A_i^a = M \omega_i^a
\]
Applying the coset space construction

The corresponding coset space: \[g_H = e^{\i P_{\mu} x^\mu} e^{\i P_a \psi^a} e^{\i \frac{1}{2} \vec{M} \omega_{ab}} \]

Covariant derivatives: \[D_\mu \psi^a = \partial_\mu \psi^a - \mu^2 \omega^a_\mu, \quad D_\mu \omega^{\lambda \sigma} \simeq \partial_\mu \omega^{\lambda \sigma} \]

The effective Lagrangian:

\[-\frac{1}{2} (D_i \psi^a)^2 = -\frac{1}{2} (\partial_i \psi^a)^2 - \frac{1}{2} \kappa^2 A^i_a A^i_a + \kappa A^i_a \partial_i \psi^a, \quad A^i_a = M \omega^i_a \]

Imposing inverse Higgs constraints:

\[\mathcal{L}_\psi = -\frac{1}{8} (D_{\{i} \psi_{a\}})^2 = -\frac{1}{4} \left((\partial_i \psi^a)^2 + (\partial_a \psi^a)^2 \right) \]
Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?

The same SSB pattern, but with redundant fields:

\[ISO(d)_{ST} \times ISO(d)_{int} \rightarrow ISO(d)_V \]

The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{2}(\Box \varphi^a)^2 - \frac{1}{2}(\partial_i \theta)^2 + \frac{1}{4}(\partial_{[i} V_{j]}^a)^2 + \lambda \theta V_i^a \partial_i \varphi^a \]

Vacuum solution: \(\varphi^a = \mu^2 x^a, \quad \theta = 0, \quad V^i_a = 0. \)
Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
The same SSB pattern, but with redundant fields:

\[ISO(d)_{ST} \times ISO(d)_{int} \rightarrow ISO(d)_V \]

The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{2}(\Box \varphi^a)^2 - \frac{1}{2}(\partial_i \theta)^2 + \frac{1}{4}(\partial_{[i} V^a_{j]})^2 + \lambda \theta V^i_a \partial_i \varphi^a \]

Vacuum solution: \(\varphi^a = \mu^2 x^a, \theta = 0, V^i_a = 0. \)

The effective Lagrangian:

\[\mathcal{L}_\psi = -\frac{1}{2}(\Box \psi^a)^2 - \frac{1}{2}(\partial_i \theta)^2 + \frac{1}{4}(\partial_{[i} V^a_{j]})^2 + \lambda \theta V^i_a (\mu^2 \delta^a_i + \partial_i \psi^a) \]
Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
The same SSB pattern, but with redundant fields:

\[\text{ISO}(d)_{ST} \times \text{ISO}(d)_{int} \rightarrow \text{ISO}(d)_V \]

The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{2} (\Box \varphi^a)^2 - \frac{1}{2} (\partial_i \theta)^2 + \frac{1}{4} (\partial_{[i} V_{j]}^a)^2 + \lambda \theta V_i^a \partial_i \varphi^a \]

Vacuum solution: \(\varphi^a = \mu^2 x^a, \quad \theta = 0, \quad V_i^a = 0. \)

The effective Lagrangian:

\[\mathcal{L}_\psi = -\frac{1}{2} (\Box \psi^a)^2 - \frac{1}{2} (\partial_i \theta)^2 + \frac{1}{4} (\partial_{[i} V_{j]}^a)^2 + \lambda \theta V_i^a (\mu^2 \delta_i^a + \partial_i \psi^a) \]

How to obtain a theory including fields charged only under \(SO_V \)?
Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?

Polar decomposition: \(\chi(x) = \gamma(x)\tilde{\chi}(x) \), \(\tilde{\chi}^T(x)(\hat{Z}_a\chi_{\text{vac}}(x)) = 0 \)

Introduce \(\chi(x), \tilde{\chi}(x) \) as:

\[
\chi(x) = (\phi^1, \ldots, \phi^d, V_1^1, \ldots, V_d^d, \theta), \quad \tilde{\chi}(x) = (\tilde{\phi}^1, \ldots, \tilde{\phi}^d, \tilde{V}_1^1, \ldots, \tilde{V}_d^d, \tilde{\theta})
\]
Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?

Polar decomposition: \[\chi(x) = \gamma(x)\tilde{\chi}(x), \quad \tilde{\chi}^T(x)(\hat{Z}_a\chi_{\text{vac}}(x)) = 0 \]

Introduce \(\chi(x), \tilde{\chi}(x) \) as:

\[\chi(x) = (\phi^1, ..., \phi^d, V_1^1, ..., V_d^d, \theta), \quad \tilde{\chi}(x) = (\tilde{\phi}^1, ..., \tilde{\phi}^d, \tilde{V}_1^1, ..., \tilde{V}_d^d, \tilde{\theta}) \]

\[\mathbf{Z}_a \rightarrow \bar{P}_a \implies \tilde{\phi}^a = 0 \]

\[\mathbf{Z}_a \rightarrow \bar{M}_{ab} \implies \tilde{\phi}^a = 0 \]
Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?

Polar decomposition:
\[\chi(x) = \gamma(x)\tilde{\chi}(x), \quad \tilde{\chi}^T(x)(\hat{Z}_a\chi_{\text{vac}}(x)) = 0 \]

Introduce \(\chi(x), \tilde{\chi}(x) \) as:

\[\chi(x) = (\phi^1, \ldots, \phi^d, V_1^1, \ldots, V_d^d, \theta), \quad \tilde{\chi}(x) = (\tilde{\phi}^1, \ldots, \tilde{\phi}^d, \tilde{V}_1^1, \ldots, \tilde{V}_d^d, \tilde{\theta}) \]

- \(Z_a \rightarrow \bar{P}_a \Rightarrow \tilde{\phi}^a = 0 \)
- \(Z_a \rightarrow \bar{M}_{ab} \Rightarrow \tilde{\phi}^a = 0 \)
- Hence,
 \[\tilde{\chi}(x) = (0, \ldots, 0, V_1^1, \ldots, V_d^d, \theta), \quad \gamma(x) = e^{i\bar{P}_a\xi^a} \]

Since homogeneously transforming quantities are obtained from \(\gamma^{-1}d\gamma \), one should not introduce \(\omega^{ab} \) at all!
Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_V?

Redefine degrees of freedom: $V_a^i \rightarrow \Omega_a^b(\psi)\tilde{V}_b^i$
Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_N?

Redefine degrees of freedom: $V^i_a \rightarrow \Omega^b_a(\psi) \tilde{V}^i_b$

Does suitable $\Omega^a_b(\psi)$ exist?
Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_V?

Redefine degrees of freedom: $V_a^i \rightarrow \Omega^b_a(\psi) \tilde{V}_b^i$

Does suitable $\Omega^a_b(\psi)$ exist?

Yes, if one can find any suitable coset:

consider $g_H = e^{i\tilde{P}_\mu x^\mu} e^{i\tilde{P}_a \psi^a} e^{i\tilde{M}_{ab} \omega^{ab}}$ and find the searched for expression.

Via polar decomposition:

$$\gamma(x) = e^{i\tilde{P}_a \psi^a} e^{\frac{i}{2} \tilde{M}_{ab} \omega^{ab}}, \quad \omega^{ab} = \omega^{ab}(\psi^a)$$
Goldstone’s theorem

Let one be given an SSB pattern:

\[G \rightarrow H, \]

and let \(Z_a \) be broken generators and \(B_n \in Z_a : \hat{B}_n \Phi|_0 \neq 0 \), then:

- \(n_{NG} = \text{nuber of } B_n \)
- Nambu-Goldstone fields corresponding to \(B_\alpha \) such that \([P_\mu, B_\alpha] \sim B_n \) are massive
Goldstone’s theorem

Let one be given an SSB pattern:
\[G \rightarrow H, \]
and let \(Z_a \) be broken generators and \(B_n \in Z_a : \hat{B}_n \Phi|_0 \neq 0 \), then:

- \(n_{NG} = \) number of \(B_n \)
- Nambu-Goldstone fields corresponding to \(B_\alpha \)
such that \([P_\mu, B_\alpha] \sim B_n\) are massive

If some of the generators always act trivially at the origin, they never give rise to Nambu-Goldstone fields.

The conformal group: \(\forall \Phi \, \hat{K}_n \Phi = 0 \)
Conclusion

- The action of the generators on the vacuum at the origin uniquely fixes the number of Nambu-Goldstone fields
- Some of the Nambu-Goldstone fields are necessarily gapped
- Inverse Higgs constraints is a trick used to uncharge fields under the action of broken but acting trivially at the origin generators