News from the NA61/SHINE experiment

Evgeny Andronov for the NA61/SHINE Collaboration

Saint Petersburg State University, LUHEP

27 May - 2 June, 2018

Valday, Russia

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Baryon density

E. Andronov (for the NA61/SHINE Collaboration)

Motivation of the NA61/SHINE strong interaction programme

Search for the critical point

Study of properties of the onset of deconfinement

Comprehensive scan in A+A collisions with light and intermediate mass nuclei in beam momentum range 13A-150A GeV/c

Baryon density

E. Andronov (for the NA61/SHINE Collaboration)

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Comprehensive scan in A+A collisions with light and intermediate mass nuclei in beam momentum range 13A-150A GeV/c

Baryon density

Data taking schedule:

taken data (green) approved for 2018 (red) proposed extension (gray)

Saint Petersburg State University, LUHEP

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experim<u>ent</u>

NA61/SHINE detector

NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d/

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

- Located at CERN SPS
- Large acceptance hadron spectrometer - coverage of the full forward hemisphere, down to p_T = 0 GeV/c
 - Performs measurements on hadron production in h+p, h+A, A+A at 13A -150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with Projectile Spectator Detector
- Recent upgrades: vertex detector (open charm measurements), FTPC-1/2/3

Saint Petersburg State University, LUHEP

3/19

Intensive fluctuation measure

A ratio of two extensive quantities ($\sim W$ - number of sources (strings, wounded nucleons) or $\sim V$ - volume in statistical models) is an intensive measure.

E.g. for charged particles multiplicity N we have:

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

• Independent of *W* in the Wounded Nucleon Model

Bialas, et al., NPB 111, 461

- $\omega[N] = 1$ for the Poisson distribution
- $\omega[N] = 0$ in the absence of fluctuations
- should be sensitive to critical fluctuations (e.g. in classical van der Waals gas within GCE formulation)
- \bullet CP signal may be shadowed by volume fluctuations $\omega[W]$
- No signs of CP observed

E. Andronov (for the NA61/SHINE Collaboration)

More details in report by A. Seryakov

Strongly intensive fluctuation measures

Baseline of search for critical behaviour: quantities with trivial properties in the reference models (e.g. WNM or IB-GCE)

$$\Delta[P_{T}, N] = \frac{1}{\omega[p_{T}]\langle N \rangle} \left(\langle N \rangle \omega[P_{T}] - \langle P_{T} \rangle \omega[N] \right)$$

$$\Sigma[P_{T}, N] = \frac{1}{\omega[p_{T}]\langle N \rangle} \left(\langle N \rangle \omega[P_{T}] + \langle P_{T} \rangle \omega[N] - 2cov(P_{T}, N) \right)$$
where $P_{T} = \sum_{i=1}^{N} p_{Ti}$
N - multiplicity of charged hadrons in an experimental acceptance $\omega[p_{T}]$ - scaled variance of inclusive p_{T} distribution

- Independent of $\langle W \rangle$ and $\omega[W]$ in the Wounded Nucleon Model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the independent particle production model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the ideal Boltzmann gas in both Grand Canonical Ensemble and Canonical Ensemble formulations
- $\Delta[P_T, N] = \Sigma[P_T, N] = 0$ in the absence of fluctuations

Gorenstein, Gazdzicki, PRC 84:014904

Gorenstein, et al., PRC 88 2:024907

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Strongly intensive fluctuation measures Sensitivity to critical point

Analysis of strongly intensive fluctuation measures is expected to give more insight into the critical point location

 $\Sigma[E^*, N]$ and $\Delta[E^*, N]$ for nucleon system with van der Waals EOS in GCE formulation in vicinity of critical point, E^* - excitation energy

Vovchenko, Gorenstein, Stoecker, PRL 118: 182301 E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment

 $\Delta, \Sigma[P_T, N]$: energy vs. system size scan Inelastic p+p vs. 0-5% ⁷Be+⁹Be vs. 0-5% ⁴⁰Ar+⁴⁵Sc

 $\begin{array}{l} \Delta[P_{\mathcal{T}},N] < 1 \\ \Sigma[P_{\mathcal{T}},N] \geq 1 \end{array}$

Explanations? • Bose-Einstein statistics of pion gas • negative event-mean p_T vs. N correlation leads to the same inequalities.

Gorenstein, Grebieszkow, PRC **89**:034903

No prominent structures which could be related to the critical point are visible.

Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Analysis extension: choice of phase-space ⁷Be+⁹Be at 150*A* GeV/*c*

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

9 intervals considered: from $\eta^{lab} \in (4.6; 5.2)$ up to $\eta^{lab} \in (3; 5.2)$

The lower cut: poor azimuthal angle acceptance and stronger electron contamination at backward rapidities. The upper cut: to reduce effects of spectators. More details in report by D. Prokhorova

Rapidity width dependence studies will allow to probe different baryochemical potentials $(\frac{\bar{p}}{p} = e^{-(2\mu_B)/T})$ - extension of the phase diagram scan!

Rapidity spectra of p and \overline{p} in inelastic p+p interactions at SPS energies

 $\frac{\overline{p}}{p}$ changes significantly with rapidity

NA61, EPJC 77 10: 671

$\Delta, \Sigma[P_T, N]$: pseudorapidity width dependence ⁷Be+⁹Be at 150A GeV/c

 $\Delta[P_T, N] < 1$ and is monotonically decreasing with the width of the pseudorapidity interval

Disagreement with the non-trivial dependence from the EPOS1.99 model

 $\Sigma[P_T, N] > 1$ and is monotonically increasing with the width of the pseudorapidity interval

 $\Sigma[P_T, N]$ approaches 1 for small width of the pseudorapidity interval (close to Poisson limit)

Andronov, KnE Energy and Physics 3 1:226

n⁸lab

Saint Petersburg State University, LUHEP

Forward-backward correlations

Causality requires appearance of long-range pseudorapidity correlations at early stages of evolution. Long-range correlations originate from fluctuations in the number of particle sources (many other effects like jets, flow, resonance decays, etc may affect these correlations).

Dumitru, et al., NPA 810: 91

Strength of correlations is quantified by the correlation coefficient:

$$b(B,F) = rac{\langle BF
angle - \langle B
angle \langle F
angle}{\langle F^2
angle - \langle F
angle^2}$$

B - an observable in "backward" η window (e.g. N_B) F - an observable in "forward" η window (e.g. N_F)

Sensitivity to the number of sources makes correlation coefficient to be not strongly intensive, i.e. to be centrality dependent. STAR, PRL 103: 172301

I. Altsybeev, KnE En. Phys. 3, 1:304

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Strongly intensive fluctuation measures: two windows case

For extensive observables in two separated pseudorapidity intervals *F* and *B* one can introduce new strongly intensive quantities:

$$\Sigma[N_F, N_B] = \frac{\langle N_B \rangle \omega[N_F] + \langle N_F \rangle \omega[N_B] - 2cov(N_F, N_B)}{\langle N_B \rangle + \langle N_F \rangle}$$

Similar expressions can be given for

- ► N_F, P_{TB} fluctuations
- ► *P*_{TF}, *P*_{TB} fluctuations

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

7 pairs of intervals considered:

 η_B^{lab} moves from (3; 3.5) up to (4.2; 4.7) $\eta_F^{lab} \in (4.7; 5.2)$

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Saint Petersburg State University, LUHEP

11/19

Strongly intensive fluctuation measures: two windows case

 $\Sigma[N_F, N_B]$ can be calculated in the model of independent quark gluon strings

Estimations for p+p collisions at LHC energies show growth of $\Sigma[N_F, N_B]$ with separation between windows

Predictions are based only on string decay features, no influence of volume fluctuations

Vechernin, this seminar

 $\Sigma[N_F, N_B]$: pseudorapidity separation dependence ⁷Be+⁹Be at 150*A* GeV/*c*

 $\Sigma[N_F, N_B]$ is growing with separation between windows

Behaviour is similar to predictions of string model for p+p collisions at LHC energies

Dominating role of short-range correlations (from a single string)?

Trend is reproduced by EPOS1.99

 $\Sigma[N_F, P_{TB}]$ and $\Sigma[P_{TF}, P_{TB}]$ ⁷Be+⁹Be at 150*A* GeV/*c*

 $\Sigma[N_F, P_{TB}] > 1$ and $\Sigma[P_{TF}, P_{TB}] > 1$

 $\Sigma[N_F, P_{TB}]$ and $\Sigma[P_{TF}, P_{TB}]$ are growing with separation between windows

Trend is reproduced by EPOS1.99

E. Andronov (for the NA61/SHINE Collaboration)

Intermittency analysis as a CP searches tool

Second factorial moments:

$$F_2(M) \equiv \frac{\sum_m \langle n_m(n_m-1) \rangle}{\sum_m \langle n_m \rangle^2}$$

Second order phase transition \rightarrow self-similarity \rightarrow correlations in configuration space that can be observed by studying correlations in momentum space

We detect local, power-law fluctuations of baryon density by calculating the scaling of 2nd factorial moments $F_2(M)$ with cell size \Leftrightarrow cells M in transverse momentum space (intermittency) Diakonos et al., PoS (CPOD2006) 010

After subtracting non-critical background moments, the correlator $\Delta F_2(M) = F_2^{data}(M) - F_2^{mix}(M)$ should scale according to a power-law for $M \gg 1$

$$\Delta F_2(M) \sim \left(M^2\right)^{\phi_2}$$
, $\phi_2 = rac{5}{6}$

Antoniou et al., PRL **97** 032002 Wosiek; Bialas, Peschanski; Satz ...

15/19

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Intermittency analysis results

NA49: no intermittency signal in C+C and Pb+Pb collisions

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

E. Andronov (for the NA61/SHINE Collaboration)

Intermittency analysis results

NA49: no intermittency signal in C+C and Pb+Pb collisions

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

NA61: no intermittency effect in the first analysis of Be+Be collisions

Observation is consistent with only 0.3% of critically correlated protons in MC simulations

Ar+Sc, Xe+La and Pb+Pb coming soon

E. Andronov (for the NA61/SHINE Collaboration)

Conclusions

• NA61/SHINE conducts search for the critical point of strongly interacting matter by means of analysis of fluctuations, namely, multiplicity, $[P_T, N]$, intermittency and others.

• Results on system size vs. energy dependence of N and $[P_T, N]$ fluctuations for particles produced in strong and EM processes within the NA61/SHINE acceptance were reported – **no indications** of the critical point of strongly interacting matter so far

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment

Conclusions

• Pseudorapidity dependence of $[P_T, N]$ fluctuations for forward energy selected ⁷Be+⁹Be collisions at 150*A* GeV/*c* - $\Delta[P_T, N]$ pseudorapidity dependence is **in disagreement** with EPOS1.99

• Intermittency analysis of self-similar (power-law) fluctuations of the net baryon density in transverse momentum spacefor forward energy selected $^7\text{Be}+^9\text{Be}$ collisions at 150*A* GeV/*c* indicates an upper limit of ~ 0.3% critical protons.

• We are working hard to extract new results for Ar+Sc, Xe+La and Pb+Pb collisions – stay tuned!

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment

Saint Petersburg State University, LUHEP

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment

Back-up

E. Andronov (for the NA61/SHINE Collaboration)

and the second second

HADRON PRODUCTION IN H+P, H+A, A+A AT I3A - ISOA (400) GEVIC

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment

NA61/SHINE Collaboration

- Azerbaijan
 - National Nuclear Research Center, Baku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - IRB, Zagreb
- France
 - LPNHE, Paris
- Germany
 - KIT, Karlsruhe
 - Fachhochschule Frankfurt, Frankfurt
 - University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - Wigner RCP, Budapest

- Japan
 - KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, Kielce
 - NCBJ, Warsaw
 - University of Warsaw, Warsaw
 - WUT, Warsaw
 - Jagiellonian University, Kraków
 - IFJ PAN, Kraków
 - AGH, Kraków
 - University of Silesia, Katowice
 - University of Wrocław, Wrocław
- Russia
 - INR Moscow, Moscow
 - JINR Dubna, Dubna
 - SPBU, St.Petersburg
 - MEPhI, Moscow

${\sim}150$ physicists from ${\sim}30$ institutes

- Serbia
 - University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 - University of Bern, Bern
 - University of Geneva, Geneva
- USA
 - University of Colorado Boulder, Boulder
 - LANL, Los Alamos
 - University of Pittsburgh, Pittsburgh
 - FNAL, Batavia
 - University of Hawaii, Manoa

NA61/SHINE theory meetings

- NA61/SHINE regularly organize theory seminars with invited speakers
- Among them: K. Werner, G. Torrieri, W. Broniowski, M. Strikman and many other respected theorists
- You can find us on facebook

E. Andronov (for the NA61/SHINE Collaboration)

Saint Petersburg State University, LUHEP

NA61/SHINE in 2021-2024

- Detector upgrade: 1 kHz readout, TOF, PSD, Large Acceptance Vertex Detector during Long Shutdown in 2019-2020
- High statistics beam momentum scan with Pb+Pb collisions for precise measurements of open charm and multi-strange huperon production
- In parallel, NA61/SHINE performs measurements for long-baseline neutrino facilities at J-PARC and Fermilab; rich neutrino program is planned to be continued after 2020

E. Andronov (for the NA61/SHINE Collaboration)

Higher moments of net electric charge

Relation with the correlation lengthN: e-by-e net chargeMean: $M = \langle N \rangle$ St. dev.: $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$ $\langle (N - \langle N \rangle)^2 \rangle \approx \xi^2$ Skewness: $S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ Kurtosis: $k = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$ $\langle (N - \langle N \rangle)^4 \rangle \approx \xi^7$

Volume independent combinations of the various moments: $\omega[N] = \frac{\sigma^2}{M} = \frac{\chi^{(2)}}{\chi^{(1)}}, \ S\sigma = \frac{\chi^{(3)}}{\chi^{(2)}}, \ S\sigma^2 = \frac{\chi^{(4)}}{\chi^{(2)}}$

The signature of non-monotonicity of these observables is expected if there is a nearby critical point in QCD phase transition.

Athanasiou et al., PRD82 (2010) 074008, Stephanov, PRL 107, 052301(2011), Karsch et al., PLB 695, 136 (2011).

E. Andronov (for the NA61/SHINE Collaboration)

Saint Petersburg State University, LUHEP

Fluctuations of net-charge in inelastic p+p interactions $p_T < 1.5$ GeV/c, NA61/SHINE acceptance

- No non-monotonic behavior suggesting CP
- EPOS model describes data on net-charge fluctuations
- Results do not agree with independent particle production (Skellam), difference may come from multi-charged particles and quantum statistics

P. Braun-Munzinger et al., Nucl. Phys. A880 48-64 (2012)

26/19

Centrality selection

One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles.

The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPC acceptance – negative correlation implies dominance of spectators in specific module.

Sketch of energy in the PSD modules and multiplicity correlations for ⁷Be+⁹Be collisions at 19A GeV/c

E. Andronov (for the NA61/SHINE Collaboration)

Saint Petersburg State University, LUHEP

Centrality selection

Due to the differences in magnetic field and PSD position for various energies, different set of modules is chosen to calculate E_F .

Unexpectedly, for the same collision energy but for different colliding systems same modules show different behaviour.

Sketch of energy in the PSD modules and multiplicity correlations for ⁷Be+⁹Be and ⁴⁰Ar+⁴⁵Sc collisions at 19A GeV/c

E. Andronov (for the NA61/SHINE Collaboration)

Saint Petersburg State University, LUHEP

Centrality selection

One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles.

The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPC acceptance – negative correlation implies dominance of spectators in specific module.

 $\Delta[P_T, N]$: pseudorapidity width dependence ⁷Be+⁹Be at 150*A* GeV/*c*

EPOS1.99 - Werner, et al., PRC 74:044902

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

30/19

 $\Sigma[P_T, N]$: pseudorapidity width dependence ⁷Be+⁹Be at 150*A* GeV/*c*

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

 $\Sigma[N_F, N_B]$: pseudorapidity separation dependence ⁷Be+⁹Be at 150*A* GeV/*c*

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

Analysis details

- In order to select properly measured central events one uses the following event selection criteria:
 - good beam quality
 - no off-time beam particles
 - good main vertex fit
 - centrality selected by forward energy (in simulations selection is based on energy of all particles in the kinematic region corresponding to the selected modules)
- In order to select particles produced in strong and EM processes from the primary vertex one uses the following track selection criteria:
 - sufficient number of points inside TPCs
 - track trajectory points to interaction point
 - no electrons/positrons
 - $p_T < 1.5 \text{ GeV}/c$
 - NA61/SHINE acceptance map
 - $0 < y_{\pi}^* < y_{beam}$ (due to poor azimuthal angle acceptance and stronger electron contamination at backward rapidities)

Examples of uncorrected N vs. P_T distributions 40 Ar+ 45 Sc at 150A GeV/c, 0 – 5%

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

Corrections

Werner, et al., PRC 74:044902

- MC used for corrections: EPOS1.99 model (version CRMC 1.5.3), GEANT3.21. The simulated data were analysed within the NA61/SHINE acceptance.
- Corrections for losses due to event and track selections, trigger biases, detector inefficiencies, secondary interactions and feed-down from weak decays for ⁴⁰Ar+⁴⁵Sc were performed on the level of the first and second moments of measured observables.
- Correction factors for $\langle N \rangle$, $\langle N^2 \rangle$, $\langle P_T \rangle$, $\langle P_T^2 \rangle$, $\langle N \cdot P_T \rangle$ and $\langle P_{T,2} \rangle$ were calculated as ratios of the corresponding moments for pure to reconstructed MC for positively, negatively and all charged hadrons, separately.

Note on errors

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment To compare results of p_T fluctuations, NA49 cuts were applied to NA61/SHINE data.

In NA49.

- because of high density of tracks, analysis was limited to forward-rapidity region (1.1 < y_{π} < 2.6)
- to exclude elastically scattered or diffractively produced protons, analysis was limited in proton rapidity ($y_p < y_{beam} - 0.5$)
- $0.005 < p_T < 1.5 \text{ GeV}/c$
- common azimuthal acceptance for all energies

Results for ⁴⁰Ar+⁴⁵Sc collisions are very close to Pb+Pb. No prominent structures which could be related to the CP are visible.

 $\Delta[P_T, N] < 1$ and $\Sigma[P_T, N] \ge 1$ for both systems.

NA49, PRC 92 no.4:044905

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

38/19

No prominent structures which could be related to the CP are visible. $\Delta[P_T, N]$ is more sensitive to centrality selection than $\Sigma[P_T, N]$.

E. Andronov (for the NA61/SHINE Collaboration)

Δ , $\Sigma[P_T, N]$: centrality dependence ⁴⁰Ar+⁴⁵Sc, 30A GeV/c

Centrality classes from 0 - 1% to 0 - 10%

 $\Sigma[P_T, N]$ is less centrality dependent than $\Delta[P_T, N]$ both in data and in the EPOS1.99 model.

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

Centrality dependence

Figure 5: (Color online) The UrQMD results for the centrality dependence of $\omega[N_{-}]$ (squares), $\Delta[P_T, N_{-}]$ (circles), and $\Sigma[P_T, N_{-}]$ (triangles) in Pb+Pb collisions at $E_{lab} = 20$ A GeV. A centrality selection is done with a restriction on the impact parameter b. (a): The full 4π detector acceptance. (b): Only particles with center of mass rapidity in the interval $1 < y_{\pi} < 2$ are accepted (pion mass was assumed for all particles). Open symbols correspond to the case when 10% of particles was randomly rejected.

Gorenstein, Grebieszkow, PRC 89:034903

E. Andronov (for the NA61/SHINE Collaboration) News from the NA61/SHINE experiment 41/19

Corrections

Corrections for contamination from off-target interactions for ⁴⁰Ar+⁴⁵Sc were not applied, but with applied vertex position selection they are expected to be less than 1%.

Non-target interactions

In order to correct the data for non-target interactions, NA61/SHINE acquires data of both target-inserted and target-removed collisions. Then, in the analysis procedure, non-target interactions are subtracted.

Example of z position distribution of the fitted vertex for Be+Be at 150 GeV/c:

42/19

Multiplicity fluctuations: strongly intensive quantity

 $\omega[N]$ is an <u>intensive</u> measure – independent of $\langle W \rangle$ in WNM Quantities that do not depend on $\langle W \rangle$ and $\omega[W]$ are strongly intensive

For N and
$$E_P = E_{beam} - E_F$$
 one can introduce

$$\Omega[N, E_P] = \omega[N] - \frac{cov(N, E_P)}{\langle E_P \rangle}$$
(NM: $\omega[N] = \omega[n] + \langle n \rangle \omega[W]$
 $\Omega[N, E_P] = \omega[n] - \frac{cov(n, e_P)}{\langle e_P \rangle}$
n and e_P are N and E_P for a fixed volume

For narrow centrality interval $\Omega[N, E_P] \rightarrow \omega[n]$. If $\omega[N] \rightarrow \Omega[N, E_P]$ in data, that would mean that volume fluctuations in $\omega[N]$ are suppressed and $\omega[N] \approx \omega[n]$

Gorenstein, Gazdzicki, PRC 84:014904 Poberezhnyuk *et al.*, Acta Phys.Polon. B 47: 2055

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

In W

ω[N] and $Ω[N, E_P]$: centrality dependence ⁷Be+⁹Be collisions at 75A GeV/c

 $\Omega[N, E_P]$ almost does not depend on centrality – strongly intensive!

 $\Omega[N, E_{P}]$ and $\omega[N]$ converges to a common limit for very central events

Is this common limit $\omega[n]$?

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment

44/19

Unwanted fluctuations

KANCHAKAVSKI, LUNGWITZ, GORENSTEIN BRATKOUSKAYA

E. Andronov (for the NA61/SHINE Collaboration)

Saint Petersburg State University, LUHEP

45/19

Critical Monte Carlo model

- Simplified version of CMC* code:
 - Only protons produced
 - One cluster per event, produced by random Lévy walk: $\tilde{d}_{\rm F}^{(B,2)} = 1/3 \Rightarrow \phi_2 = 5/6$

- Lower / upper bounds of Lévy walks pmin.max plugged in.
- Cluster center exponential in p_T , slope adjusted by T_c parameter.
- Poissonian proton multiplicity distribution.

Input parameters										
-	Parameter	$p_{\min}\left(MeV ight)$	$p_{\max}({ m MeV})$	$\lambda_{Poisson}$	T_c (MeV)					
	Value	0.1 ightarrow 1	800 ightarrow 1200	$\langle \pmb{p} angle_{non-empty}$	163					

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]

46/19

Critical Monte Carlo model for Be+Be collisions

1 ^{7}Be (beam) + ^{9}Be (target)

• Collision parameters:

Beam energy: 150A GeV (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8 \text{ GeV}$ ⁷ Be + ⁹ Be NA61 data - proton p_T statistics												
	Centrality	#events	⟨ <i>p</i> ⟩ Nor	<i>p</i> _T ≤1.5 G 1-empty	eV,∣y Wit	_{см} ≤0.75 h empty	$\Delta p_{x,y}$					
	10%	166,215	1.48	3 ± 0.74	0.82	2 ± 0.92	0.38 - 0.49					
CMC simulation parameters												
	Parameter	p _{min} (MeV) 0.85		p _{max} (M	eV)	$\lambda_{Poisson}$	T_c (MeV)					
	Value			1200		0.76	163	.]				

• $\langle p \rangle$ in mid-rapidity remains low, except for very central collisions

Intermittency analysis results

NA49: no intermittency signal in C+C and Pb+Pb collisions

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

NA61: no intermittency effect in the first analysis of Be+Be collisions

Observation is consistent with only 0.3% of critically correlated protons in MC simulations

Ar+Sc, Xe+La and Pb+Pb coming soon

E. Andronov (for the NA61/SHINE Collaboration)

News from the NA61/SHINE experiment