Recent developments in charmed baryon spectroscopy

Elena Solovieva
Moscow Institute of Physics and Technology
Lebedev Physical Institute of the RAS
Known Charmed Baryon States

$B_c = c + \text{diquark}$

Quark content of diquark:
- qq with isospin 0 (flavor antisymmetric) — Λ_c family;
- qq with isospin 1 (flavor symmetric) — Σ_c family;
- qs with isospin $\frac{1}{2}$ — Ξ_c family;
- ss with isospin 0 (flavor symmetric) — Ω_c family.
<table>
<thead>
<tr>
<th>State</th>
<th>Decay mode</th>
<th>Mass, MeV/c²</th>
<th>Width, MeV</th>
<th>J/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2645)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2645)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2790)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2790)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2815)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2815)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2930)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2970)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(2970)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(3055)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(3055)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(3080)⁺</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
<tr>
<td>Ξ⁺(3080)⁰</td>
<td>Ξ⁺γ, Ξ⁰γ</td>
<td>2575.7 ± 3.0</td>
<td>2577.9 ± 2.9</td>
<td>1/2 +</td>
</tr>
</tbody>
</table>
Decays to Ξ_c: Ξ'_c Isodoublet

$\Xi_c(2645)^+$
$\Xi_c(2645)^0$
$\Xi_c(2790)^+$
$\Xi_c(2790)^0$
$\Xi_c(2815)^+$
$\Xi_c(2815)^0$
$\Xi_c(2930)^0$
$\Xi_c(2970)^+$
$\Xi_c(2970)^0$
$\Xi_c(3055)^+$
$\Xi_c(3055)^0$
$\Xi_c(3080)^+$
$\Xi_c(3080)^0$

$\Xi'_c \rightarrow \Xi_c \gamma$

$M_{\Xi'_c^+} - M_{\Xi_c^+} = (110.5 \pm 0.1[stat.] \pm 0.4[syst.]) \text{ MeV/c}^2$

$M_{\Xi'_c^0} - M_{\Xi_c^0} = (108.3 \pm 0.1[stat.] \pm 0.4[syst.]) \text{ MeV/c}^2$

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Decays to Ξ_c: $\Xi_c(2790)$ Isodoublet

$\Xi_c(2790) \rightarrow \Xi'_c \pi$

$M_{\Xi_c(2790)}^+ - M_{\Xi'_c(2790)} = (213.2 \pm 0.2[\text{stat.}] \pm 0.1[\text{syst.}]) \text{ MeV}/c^2$

$\Gamma_{\Xi_c(2790)}^+ = (8.9 \pm 0.6[\text{stat.}] \pm 0.8[\text{syst.}]) \text{ MeV}$

$M_{\Xi_c(2790)}^0 - M_{\Xi'_c(2790)} = (215.7 \pm 0.2[\text{stat.}] \pm 0.1[\text{syst.}]) \text{ MeV}/c^2$

$\Gamma_{\Xi_c(2790)}^0 = (10.0 \pm 0.7[\text{stat.}] \pm 0.8[\text{syst.}]) \text{ MeV}$

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Decays to Ξ_c: $\Xi_c(2645)$ Isodoublet

$\Xi_c(2645) \equiv \Xi_c^*$

$\Xi_c(2645) \rightarrow \Xi_c \pi$

$M_{\Xi_c(2645)^+} - M_{\Xi_c^0} = (174.66 \pm 0.06 [\text{stat.}] \pm 0.07 [\text{syst.}]) \text{ MeV}/c^2$

$\Gamma_{\Xi_c(2645)^+} = (2.06 \pm 0.13 [\text{stat.}] \pm 0.13 [\text{syst.}]) \text{ MeV}$

$M_{\Xi_c(2645)^0} - M_{\Xi_c^+} = (178.46 \pm 0.07 [\text{stat.}] \pm 0.07 [\text{syst.}]) \text{ MeV}/c^2$

$\Gamma_{\Xi_c(2645)^0} = (2.35 \pm 0.18 [\text{stat.}] \pm 0.13 [\text{syst.}]) \text{ MeV}$

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Decays to Ξ_c: $\Xi_c(2815)$ Isodoublet

$\Xi_c(2815) \rightarrow \Xi_c^\ast \pi$

$M_{\Xi_c(2815)^+} - M_{\Xi_c^+} = (348.80 \pm 0.08{[\text{stat.}]} \pm 0.06{[\text{syst.}]) \text{ MeV/c}^2$

$\Gamma_{\Xi_c(2815)^+} = (2.43 \pm 0.20{[\text{stat.}]} \pm 0.17{[\text{syst.}]) \text{ MeV}$

$M_{\Xi_c(2815)^0} - M_{\Xi_c^0} = (349.35 \pm 0.08{[\text{stat.}]} \pm 0.07{[\text{syst.}]) \text{ MeV/c}^2$

$\Gamma_{\Xi_c(2815)^0} = (2.54 \pm 0.18{[\text{stat.}]} \pm 0.17{[\text{syst.}]) \text{ MeV}$

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Decays to Ξ_c: $\Xi_c(2970)$ Isodoublet

$\Xi_c(2970) \rightarrow \Xi_c^*\pi$

$M_{\Xi_c(2970)^+} - M_{\Xi_c^+} = (498.1 \pm 0.8[\text{stat.}] \pm 0.2[\text{syst.}])$ MeV/c2

$\Gamma_{\Xi_c(2970)^+} = (28.1 \pm 2.4[\text{stat.}])^{+1.0}_{-5.0}[\text{syst.}]$ MeV

$M_{\Xi_c(2970)^0} - M_{\Xi_c^0} = (499.9 \pm 0.7[\text{stat.}] \pm 0.2[\text{syst.}])$ MeV/c2

$\Gamma_{\Xi_c(2970)^0} = (30.3 \pm 2.3[\text{stat.}])^{+1.0}_{-1.8}[\text{syst.}]$ MeV

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Ξ_c Family: Decays to Ξ_c

<table>
<thead>
<tr>
<th>Particle</th>
<th>Yield</th>
<th>Mass</th>
<th>$M - M(\Xi_c)$</th>
<th>$M - M(\Xi'_c)$</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi_c^{'+}$</td>
<td>7055 ± 211</td>
<td>2578.4 ± 0.1 ± 0.4$^{+0.3}_{-0.4}$ 2575.6 ± 3.0</td>
<td>110.5 ± 0.1 ± 0.4</td>
<td>107.8 ± 3.0</td>
<td>2.06 ± 0.13 ± 0.13</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2579.2 ± 0.1 ± 0.4$^{+0.3}_{-0.4}$ 2577.9 ± 2.9</td>
<td>108.3 ± 0.1 ± 0.4</td>
<td>107.0 ± 2.9</td>
<td>2.6 ± 0.2 ± 0.4</td>
</tr>
<tr>
<td>Ξ_c^{0}</td>
<td>11560 ± 276</td>
<td>2545.58 ± 0.06 ± 0.07$^{+0.28}_{-0.40}$ 2645.9 ± 0.5</td>
<td>174.66 ± 0.06 ± 0.07</td>
<td>175.0 ± 0.6</td>
<td>2.35 ± 0.18 ± 0.13</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2646.43 ± 0.07 ± 0.07$^{+0.28}_{-0.40}$ 2645.9 ± 0.5</td>
<td>178.46 ± 0.07 ± 0.07</td>
<td>178.0 ± 0.6</td>
<td>< 5.5</td>
</tr>
<tr>
<td>$\Xi_c(2645)^+$</td>
<td>1260 ± 40</td>
<td>2791.6 ± 0.2 ± 0.1 ± 0.4$^{+0.3}_{-0.4}$ 2789.8 ± 3.2</td>
<td>320.7 ± 0.2 ± 0.1 ± 0.4</td>
<td>318.2 ± 3.2</td>
<td>8.9 ± 0.6 ± 0.8</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2794.9 ± 0.3 ± 0.1 ± 0.4$^{+0.3}_{-0.4}$ 2791.9 ± 3.3</td>
<td>323.8 ± 0.2 ± 0.1 ± 0.4</td>
<td>324.0 ± 3.3</td>
<td>< 15</td>
</tr>
<tr>
<td>$\Xi_c(2645)^0$</td>
<td>975 ± 36</td>
<td>2816.73 ± 0.08 ± 0.06$^{+0.28}_{-0.40}$ 2816.6 ± 0.9</td>
<td>348.80 ± 0.08 ± 0.06</td>
<td>348.7 ± 0.9</td>
<td>10.0 ± 0.7 ± 0.8</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2820.20 ± 0.08 ± 0.07$^{+0.28}_{-0.40}$ 2819.6 ± 1.2</td>
<td>349.35 ± 0.08 ± 0.07</td>
<td>348.8 ± 1.2</td>
<td>< 12</td>
</tr>
<tr>
<td>$\Xi_c(2790)^+$</td>
<td>2231 ± 103</td>
<td>2966.0 ± 0.8 ± 0.2$^{+0.3}_{-0.4}$ 2970.7 ± 2.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2970.8 ± 0.7 ± 0.2$^{+0.3}_{-0.4}$ 2968.0 ± 2.6 ± 0.5</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2790)^0$</td>
<td>1241 ± 72</td>
<td>2816.73 ± 0.08 ± 0.06$^{+0.28}_{-0.40}$ 2816.6 ± 0.9</td>
<td>348.80 ± 0.08 ± 0.06</td>
<td>348.7 ± 0.9</td>
<td>2.43 ± 0.20 ± 0.17</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2820.20 ± 0.08 ± 0.07$^{+0.28}_{-0.40}$ 2819.6 ± 1.2</td>
<td>349.35 ± 0.08 ± 0.07</td>
<td>348.8 ± 1.2</td>
<td>< 3.5</td>
</tr>
<tr>
<td>$\Xi_c(2815)^+$</td>
<td>941 ± 35</td>
<td>2966.0 ± 0.8 ± 0.2$^{+0.3}_{-0.4}$ 2970.7 ± 2.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2970.8 ± 0.7 ± 0.2$^{+0.3}_{-0.4}$ 2968.0 ± 2.6 ± 0.5</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2815)^0$</td>
<td>1258 ± 40</td>
<td>2816.73 ± 0.08 ± 0.06$^{+0.28}_{-0.40}$ 2816.6 ± 0.9</td>
<td>348.80 ± 0.08 ± 0.06</td>
<td>348.7 ± 0.9</td>
<td>2.54 ± 0.18 ± 0.17</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2820.20 ± 0.08 ± 0.07$^{+0.28}_{-0.40}$ 2819.6 ± 1.2</td>
<td>349.35 ± 0.08 ± 0.07</td>
<td>348.8 ± 1.2</td>
<td>< 6.5</td>
</tr>
<tr>
<td>$\Xi_c(2970)^+$</td>
<td>916 ± 55</td>
<td>2966.0 ± 0.8 ± 0.2$^{+0.3}_{-0.4}$ 2970.7 ± 2.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2970.8 ± 0.7 ± 0.2$^{+0.3}_{-0.4}$ 2968.0 ± 2.6 ± 0.5</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2970)^0$</td>
<td>1443 ± 75</td>
<td>2816.73 ± 0.08 ± 0.06$^{+0.28}_{-0.40}$ 2816.6 ± 0.9</td>
<td>348.80 ± 0.08 ± 0.06</td>
<td>348.7 ± 0.9</td>
<td>28.1 ± 2.4$^{+1.0}_{-5.0}$</td>
</tr>
<tr>
<td>PDG</td>
<td></td>
<td>2820.20 ± 0.08 ± 0.07$^{+0.28}_{-0.40}$ 2819.6 ± 1.2</td>
<td>349.35 ± 0.08 ± 0.07</td>
<td>348.8 ± 1.2</td>
<td>17.9 ± 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2966.0 ± 0.8 ± 0.2$^{+0.3}_{-0.4}$ 2970.7 ± 2.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td>498.1 ± 0.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2970.8 ± 0.7 ± 0.2$^{+0.3}_{-0.4}$ 2968.0 ± 2.6 ± 0.5</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td>499.9 ± 0.7 ± 0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2816.73 ± 0.08 ± 0.06$^{+0.28}_{-0.40}$ 2816.6 ± 0.9</td>
<td>348.80 ± 0.08 ± 0.06</td>
<td>348.7 ± 0.9</td>
<td>30.3 ± 2.3$^{+1.0}_{-1.8}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2820.20 ± 0.08 ± 0.07$^{+0.28}_{-0.40}$ 2819.6 ± 1.2</td>
<td>349.35 ± 0.08 ± 0.07</td>
<td>348.8 ± 1.2</td>
<td>20 ± 7</td>
</tr>
</tbody>
</table>

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]
Family: Decays to $\Lambda_c(\Sigma_c)$

\[B^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^- \]

\[m_{\Xi_c(2930)^0} = (2931 \pm 3[\text{stat.}] \pm 5[\text{syst.}]) \text{ MeV}/c^2 \]

\[\Gamma_{\Xi_c(2930)^0} = (36 \pm 7[\text{stat.}] \pm 11[\text{syst.}]) \text{ MeV} \]

\[m_{\Xi_c(2930)^0} = (2928.9 \pm 3.0[\text{stat.}]^{+0.9}_{-12.0}[\text{syst.}]) \text{ MeV}/c^2 \]

\[\Gamma_{\Xi_c(2930)^0} = (19.5 \pm 8.4[\text{stat.}]^{+5.9}_{-7.9}[\text{syst.}]) \text{ MeV} \]

[B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 77, 031101 (2008)]

[Y.B. Li, C.P. Shen et al. (Belle Collaboration), Eur. Phys. J. C 78, 252 (2018)]
\(\Xi_c \) Family: Decays to \(\Lambda_c(\Sigma_c) \)

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Xi_c(2970)^+)</td>
<td>2974.9 ± 1.5 ± 2.1</td>
<td>14.8 ± 2.5 ± 4.1</td>
</tr>
<tr>
<td>(\Xi_c(3055)^+)</td>
<td>3058.1 ± 1.0 ± 2.1</td>
<td>9.7 ± 3.4 ± 3.3</td>
</tr>
<tr>
<td>(\Xi_c(3080)^+(\Sigma_c))</td>
<td>3077.9 ± 0.4 ± 0.7</td>
<td>3.2 ± 1.3 ± 1.3</td>
</tr>
<tr>
<td>(\Xi_c(3080)^+(\Sigma_c^*))</td>
<td>3076.9 ± 0.3 ± 0.2</td>
<td>2.4 ± 0.9 ± 1.6</td>
</tr>
</tbody>
</table>

Ξ_c Family: Decays to $\Lambda_c(\Sigma_c)$

<table>
<thead>
<tr>
<th>Ξ_c</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi_c(3123)^+$</td>
<td>$3122.9 \pm 1.3 \pm 0.3$</td>
<td>$4.4 \pm 3.4 \pm 1.7$</td>
<td>3.6σ (3.0σ)</td>
</tr>
</tbody>
</table>

[B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 77, 012002 (2008)]
\[\Xi_c \text{ Family: Decays to } \Lambda D \]

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV)</th>
<th>Significance (\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Xi_c(3055)^0</td>
<td>3059.0 ± 0.5 ± 0.6</td>
<td>6.4 ± 2.1 ± 1.1</td>
<td>8.6</td>
</tr>
<tr>
<td>\Xi_c(3055)^+</td>
<td>3055.8 ± 0.4 ± 0.2</td>
<td>7.0 ± 1.2 ± 1.5</td>
<td>11.7</td>
</tr>
<tr>
<td>\Xi_c(3080)^+</td>
<td>3079.6 ± 0.4 ± 0.1</td>
<td>< 6.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Decay mode</th>
<th>Mass, MeV/c²</th>
<th>Width, MeV</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ_c'</td>
<td>$\Xi_c^+\gamma$</td>
<td>2577.4 ± 1.2</td>
<td></td>
<td>$\frac{1}{2}^+$</td>
</tr>
<tr>
<td>Ξ_c^0</td>
<td>$\Xi_c^0\gamma$</td>
<td>2578.8 ± 0.5</td>
<td></td>
<td>$\frac{1}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2645)^+$</td>
<td>$\Xi_c^0\pi^+$</td>
<td>2645.53 ± 0.31</td>
<td>2.14 ± 0.19</td>
<td>$\frac{3}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2645)^0$</td>
<td>$\Xi_c^+\pi^-$</td>
<td>2646.32 ± 0.31</td>
<td>2.35 ± 0.22</td>
<td>$\frac{3}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2790)^+$</td>
<td>$\Xi_c^0\pi^+$</td>
<td>2792.0 ± 0.5</td>
<td>8.9 ± 1.0</td>
<td>$\frac{1}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2790)^0$</td>
<td>$\Xi_c^+\pi^-$</td>
<td>2792.8 ± 1.2</td>
<td>10.0 ± 1.1</td>
<td>$\frac{1}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2815)^+$</td>
<td>$\Xi_c^0\pi^+\pi^-, \Xi_c(2645)^0\pi^+, \Xi_c^0\pi^+$</td>
<td>2816.67 ± 0.31</td>
<td>2.43 ± 0.26</td>
<td>$\frac{3}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2815)^0$</td>
<td>$\Xi_c^0\pi^+\pi^-, \Xi_c(2645)^+\pi^-, \Xi_c^+\pi^-$</td>
<td>2820.22 ± 0.32</td>
<td>2.54 ± 0.25</td>
<td>$\frac{3}{2}^+$</td>
</tr>
<tr>
<td>$\Xi_c(2930)^0$</td>
<td>$\Lambda_c^+K^-$</td>
<td>2928.9±3.1$^{+3.1}_{-12.4}$</td>
<td>19.5$^{+10}_{-12}$</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2970)^+$</td>
<td>$\Lambda_c^+K^-\pi^+, \Sigma_c^{++}K^-, \Xi_c(2645)^0\pi^+, \Xi_c^0\pi^+$</td>
<td>2969.4 ± 0.8</td>
<td>20.9$^{+2.4}_{-3.5}$</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(2970)^0$</td>
<td>$\Xi_c(2645)^+\pi^-, \Xi_c^+\pi^-$</td>
<td>2967.8 ± 0.8</td>
<td>28.1$^{+3.4}_{-4.0}$</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(3055)^+$</td>
<td>$\Sigma_c^{++}K^-, \Lambda D^+$</td>
<td>3055.9 ± 0.4</td>
<td>7.8 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(3055)^0$</td>
<td>ΛD^0</td>
<td>3059.0 ± 0.8</td>
<td>6.4 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(3080)^+$</td>
<td>$\Lambda_c^+K^-\pi^+, \Sigma_c^{++}K^-, \Sigma_c(2520)^{++}K^-, \Lambda D^+$</td>
<td>3077.2 ± 0.4</td>
<td>3.6 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>$\Xi_c(3080)^0$</td>
<td>$\Lambda_c^+K_S^0\pi^-, \Sigma_c^0K_S^0, \Sigma_c(2520)^0K_S^0$</td>
<td>3079.9 ± 1.4</td>
<td>5.6 ± 2.2</td>
<td></td>
</tr>
</tbody>
</table>
Ω_c Family

$\Omega_c^*0 \rightarrow \Omega_c^0 \gamma$

$[70.8 \pm 1.0\, (\text{stat.}) \pm 1.1\, (\text{syst.})] \, \text{MeV}/c^2$

[B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 97, 232001 (2006)]

$\Delta M_{\Omega_c^0} = \left[70.7 \pm 0.9\, (\text{stat.})^+_{0.1} (\text{syst.})^-_{0.9}\right] \, \text{MeV}/c^2$

[E. Solovieva, R. Chistov et al. (Belle Collaboration), Phys. Lett. B 672, 1 (2009)]
\[\Omega_c(X)^0 \rightarrow \Xi_c^+ K^-\]

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV)</th>
<th>(\Gamma) (MeV)</th>
<th>(N_\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega_c(3000)^0)</td>
<td>3000.4 ± 0.2 ± 0.1^{+0.3}_{-0.5}</td>
<td>4.5 ± 0.6 ± 0.3</td>
<td>20.4</td>
</tr>
<tr>
<td>(\Omega_c(3050)^0)</td>
<td>3050.2 ± 0.1 ± 0.1^{+0.3}_{-0.5}</td>
<td>0.8 ± 0.2 ± 0.1</td>
<td>20.4</td>
</tr>
<tr>
<td>(\Omega_c(3066)^0)</td>
<td>3065.6 ± 0.1 ± 0.3^{+0.3}_{-0.5}</td>
<td>3.5 ± 0.4 ± 0.2</td>
<td>< 1.2 MeV, 95% CL</td>
</tr>
<tr>
<td>(\Omega_c(3090)^0)</td>
<td>3090.2 ± 0.3 ± 0.5^{+0.3}_{-0.5}</td>
<td>8.7 ± 1.0 ± 0.8</td>
<td>23.9</td>
</tr>
<tr>
<td>(\Omega_c(3119)^0)</td>
<td>3119.1 ± 0.3 ± 0.9^{+0.3}_{-0.5}</td>
<td>1.1 ± 0.8 ± 0.4</td>
<td>10.4</td>
</tr>
<tr>
<td>(\Omega_c(3188)^0)</td>
<td>3188 ± 5 ± 13</td>
<td>60 ± 15 ± 11</td>
<td></td>
</tr>
</tbody>
</table>

[\text{R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017)}]
Ω_c Family

$\Omega_c (X)^0 \rightarrow \Xi_c^+ K^-$

$\Xi^-\pi^+\pi^+, \Lambda K^-\pi^+\pi^+, \Xi^0\pi^+, \Sigma^0 K^-\pi^+, \Omega^-\Xi^0 K^0\pi^+$

<table>
<thead>
<tr>
<th>Ω_c Excited state</th>
<th>3000</th>
<th>3050</th>
<th>3066</th>
<th>3090</th>
<th>3119</th>
<th>3188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>37.7 ± 11.0</td>
<td>28.2 ± 7.7</td>
<td>81.7 ± 13.9</td>
<td>86.6 ± 17.4</td>
<td>3.6 ± 6.9</td>
<td>135.2 ± 43.0</td>
</tr>
<tr>
<td>Significance</td>
<td>3.9σ</td>
<td>4.6σ</td>
<td>7.2σ</td>
<td>5.7σ</td>
<td>0.4σ</td>
<td>2.4σ</td>
</tr>
<tr>
<td>LHCb mass</td>
<td>$3000.4 \pm 0.2 \pm 0.1$</td>
<td>$3050.2 \pm 0.1 \pm 0.1$</td>
<td>$3065.5 \pm 0.1 \pm 0.3$</td>
<td>$3090.2 \pm 0.3 \pm 0.5$</td>
<td>$3119 \pm 0.3 \pm 0.9$</td>
<td>$3188 \pm 5 \pm 13$</td>
</tr>
<tr>
<td>Belle mass (with fixed Γ)</td>
<td>$3000.7 \pm 1.0 \pm 0.2$</td>
<td>$3050.2 \pm 0.4 \pm 0.2$</td>
<td>$3064.9 \pm 0.6 \pm 0.2$</td>
<td>$3089.3 \pm 1.2 \pm 0.2$</td>
<td>\ldots</td>
<td>$3199 \pm 9 \pm 4$</td>
</tr>
</tbody>
</table>

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 97, 051102 (2018)]
Ξ_{cc}^+ Family

$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

$\Xi_{cc}^+ \rightarrow p D^+ K^-$

$M(\Lambda_c^+ K^- \pi^+)$ [GeV/c2]

Events / 0.5 [MeV/c2]

$M(pD^+ K^-)$

Events / 0.5 [MeV/c2]

$M. Mattson et al. (SELEX Collaboration), Phys. Rev. Lett. 89, 112001 (2002)]

$$m_{\Xi_{cc}^+} = (3518.7 \pm 1.7) \text{ MeV/c}^2$$

#18
\(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^- \pi^+ \pi^+ \)

\[
\begin{align*}
\Xi_{cc}^{++} & = (3621.40 \pm 0.72 \text{[stat.]} \pm 0.27 \text{[syst.]} \pm 0.72 [\Lambda_{c}^{+}]) \text{ MeV/c}^2 \\
\Xi_{cc}^{++} - \Xi_{cc}^{++} & = (103 \pm 2) \text{ MeV/c}^2
\end{align*}
\]

Conclusions

- The Ξ_{cc} state reported by LHCb is consistent with most theoretical expectations, but it is inconsistent with being an isospin partner to the Ξ_{cc} state reported previously by the SELEX Collaboration.
- Recently observed excited Ω_c states present a unique opportunity to test and further improve theoretical models, that predict properties of heavy hadrons.
- More accurate Ξ_c mass values is of both practical and theoretical interest, and knowing their widths can then lead to measurements of the matrix elements of their decays. These matrix elements are also applicable to other excited charm and bottom baryons.
- No direct measurements of the J^P of any of the excited strange charmed baryons are available. Constraints on the quantum numbers can be inferred only from the decay pattern.
- Interesting feature is that highly excited charmed baryons can decay to a charm meson and a non-charm baryon.