Functional approach for the description of vacuum influence on electron states

Alexander Biryukov, Mark Shleenkov

Samara National Research University

The XX International Seminar on High Energy Physics
May 27–June 2, 2018
Valday, Russia
Functional approach for the description of vacuum influence on electron states

The Feynman-Vernon Influence Functional approach

![Diagram](image)

General quantum systems Q and X coupled by a potential $V(Q, X, t)$.

«...It is shown that the effect of the external systems in such a formalism [paths integral formalism] can always be included in a general class of functionals (influence functionals) of the coordinates of the system only...»
QED Lagrangian

\begin{equation}
\mathcal{L}(x) = \overline{\psi}(x)(i\gamma^\mu \partial_\mu - m)\psi(x) - \frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x) - e j^\mu(x) A_\mu(x) \tag{1}
\end{equation}

where

\begin{equation}
F_{\mu\nu}(x) = \partial_\mu A_\nu(x) - \partial_\nu A_\mu(x) \tag{2}
\end{equation}

\begin{equation}
j^\mu(x) = \overline{\psi}(x)\gamma^\mu\psi(x) \tag{3}
\end{equation}
Functional approach for the description of vacuum influence on electron states

Quantum electrodynamics

\[\hat{\psi}(x, t) = \sum_{p, \sigma=1,2} \frac{1}{\sqrt{2V \omega_p^{(f)}}} \left(\hat{b}_{p\sigma} u_\sigma(p) e^{ipx} + \hat{c}_{p\sigma}^\dagger u_\sigma(-p) e^{-ipx} \right), \quad (4) \]

\[\hat{\bar{\psi}}(x, t) = \sum_{p, \sigma=1,2} \frac{1}{\sqrt{2V \omega_p^{(f)}}} \left(\hat{b}_{p\sigma}^\dagger \bar{u}_\sigma(p) e^{-ipx} + \hat{c}_{p\sigma} \bar{u}_\sigma(-p) e^{ipx} \right), \quad (5) \]

\[\hat{j}_\mu(x, t) = \hat{\psi}(x, t) \gamma_\mu \hat{\bar{\psi}}(x, t) \quad (6) \]

\[\hat{A}^\mu(x, t) = \sum_{k, \lambda=1,2} \frac{1}{\sqrt{2V \omega_k^{(b)}}} \varepsilon_\lambda^\mu \left(\hat{a}_{k\lambda} e^{ikx} + \hat{a}_{k\lambda}^\dagger e^{-ikx} \right) \quad (7) \]
Functional approach for the description of vacuum influence on electron states

Quantum electrodynamics

Second quantization

\[\hat{H}_{\text{full}} = \sum_{p, \sigma = 1, 2} \omega_p^{(f)} \left(\hat{b}_{p\sigma}^\dagger \hat{b}_{p\sigma} + \hat{c}_{p\sigma}^\dagger \hat{c}_{p\sigma} \right) + \sum_{k, \lambda = 1, 2} \omega_k^{(b)} \hat{a}_{k\lambda}^\dagger \hat{a}_{k\lambda} + e \sum_{k, \lambda = 1, 2} \frac{\sqrt{V}}{\sqrt{2\omega_k^{(b)}}} \left(\varepsilon^{\mu}_{\lambda} \hat{j}_{\mu}^+(k, t) \hat{a}_{k\lambda} + \varepsilon^{*\mu}_{\lambda} \hat{j}_{\mu}^-(k, t) \hat{a}_{k\lambda}^\dagger \right) \]

(8)

where

\[\hat{j}_{\mu}^+(k, t) = \int \hat{j}_{\mu}(x, t) e^{i k x} \, dx, \quad \hat{j}_{\mu}^-(k, t) = \int \hat{j}_{\mu}(x, t) e^{-i k x} \, dx \]

(9)
Evolution equation for statistical operator $\hat{\rho}(t_f)$

$$\hat{\rho}(t_f) = \hat{U}(t_f, t_{in})\hat{\rho}(t_{in})\hat{U}^\dagger(t_f, t_{in})$$ \hspace{1cm} (10)

where $\hat{\rho}(t_{in})$ is statistical operator, describing initial state at moment t_{in}, $\hat{U}(t_f, t_{in})$ — evolution operator.

$$\hat{U}(t_f, t_{in}) = \hat{T}\exp[-\frac{i}{\hbar}\int_{t_{in}}^{t_f} \hat{H}_{full}(\tau)d\tau].$$ \hspace{1cm} (11)

where \hat{H}_{full}:

$$\hat{H}_{full} = \hat{H}_{sys} + \hat{H}_{field} + \hat{H}_{int}$$ \hspace{1cm} (12)
Coherent states for electromagnetic field

\[\hat{a}_{k\lambda} |\alpha_{k\lambda}\rangle = \alpha_{k\lambda} |\alpha_{k\lambda}\rangle, \quad \langle \alpha_{k\lambda} | \hat{a}^\dagger_{k\lambda} = \langle \alpha_{k\lambda} | \alpha_{k\lambda}^* , \quad (13) \]

where \(\alpha_{k\lambda} \) — complex value, which describe states \(k \) mode of quantum electromagnetic field. These states \(|\alpha\rangle \) are non-orthogonal:

\[\langle \alpha'_{k'\lambda'} | \alpha_{k\lambda}\rangle = \delta_{k'k} \delta_{\lambda'\lambda} \exp \left\{ -\frac{1}{2} \left(|\alpha'_{k'\lambda'}|^2 + |\alpha_{k\lambda}|^2 - 2\alpha'_{k'\lambda'}^* \alpha_{k\lambda} \right) \right\} . \quad (14) \]

There is resolution of the identity operator:

\[\int |\alpha_{k\lambda}\rangle \langle \alpha_{k\lambda}| d^2\alpha_{k\lambda} = 1. \quad (15) \]
Grassman states for Dirac field

\[\hat{b}_{p,\sigma} |\theta_{p,\sigma}\rangle = \theta_{p,\sigma} |\theta_{p,\sigma}\rangle, \quad \langle \bar{\theta}_{p,\sigma} | \hat{b}_{p,\sigma}^\dagger = \langle \bar{\theta}_{p,\sigma} | \bar{\theta}_{p,\sigma}, \tag{16} \]

where \(\theta_{p,\sigma} \) — grassman variable. These states (|\theta\rangle) are non-orthogonal:

\[\langle \bar{\theta}'_{p',\sigma'} | \theta_{p\sigma} \rangle = \delta_{p'p} \delta_{\sigma'\sigma} \exp \left\{ -\frac{1}{2} \left(\bar{\theta}'_{p',\sigma'} \theta'_{p',\sigma'} + \bar{\theta}_{p\sigma} \theta_{p\sigma} - 2 \bar{\theta}'_{p',\sigma'} \theta_{p\sigma} \right) \right\}. \tag{17} \]

There is resolution of the identity operator:

\[\int |\theta_{p\sigma}\rangle\langle \bar{\theta}_{p\sigma}| \frac{d^2 \theta_{p\sigma}}{\pi} = \hat{1}. \tag{18} \]
Grassman variables properties

For two grassman variables θ and η

$$\theta \eta + \eta \theta = 0 \quad \text{or} \quad \theta \eta = -\eta \theta \quad \text{so} \quad \theta^2 = 0 \quad (19)$$

Then

$$\int d\theta f(\theta) = \int d\theta (A + B\theta) = B. \quad (20)$$

and

$$\int d\theta^* d\theta e^{-\theta^* b \theta} = b \quad (21)$$

and

$$\left(\prod_i \int d\theta^* d\theta \right) \theta_k \theta_l^* e^{-\theta^* B_{ij} \theta^*} = \frac{\det B}{B_{kl}} \quad (22)$$
Evolution equation for density matrix in holomorphic representation $|\theta_{p\sigma}, \alpha_{k\lambda}\rangle = |\theta_{p\sigma}\rangle \otimes |\alpha_{k\lambda}\rangle$

The density matrix:

$$\rho(\alpha^*_f, \theta_f, \alpha'_f, \theta'_f; t_f) = \langle \theta_f, \alpha_f|\hat{\rho}(t_f)|\theta'_f, \alpha'_f\rangle$$ \hspace{1cm} (23)$$

The kernel of evolution operator:

$$U(\alpha^*_f, \theta_f, t_f|\alpha_{in}, \theta_{in}, t_{in}) = \langle \theta_f, \alpha_f|\hat{U}(t_f, t_{in})|\theta_{in}, \alpha_{in}\rangle$$ \hspace{1cm} (24)$$

The evolution equation:

$$\rho(\alpha^*_f, \theta_f, \alpha'_f, \theta'_f; t_f) = \int \frac{d^2\alpha'_{in}}{\pi} \frac{d^2\theta'_{in}}{\pi} \frac{d^2\alpha_{in}}{\pi} \frac{d^2\theta_{in}}{\pi} \times$$

$$\times U(\alpha^*_f, \theta_f, t_f|\alpha_{in}, \theta_{in}, t_{in}) \rho(\alpha^*_f, \theta_{in}, \alpha'_{in}, \theta'_{in}; t_{in}) U^*(\alpha'_f, \theta'_f, t_f|\alpha'_{in}, \theta'_{in}; t_{in})$$ \hspace{1cm} (25)$$
The kernel of evolution operator

\[U(\alpha^*_f, \bar{\theta}_f, t_f | \alpha_f, \theta_f, t_{in}) = \int \mathcal{D}\alpha^*(\tau)\mathcal{D}\alpha(\tau)\mathcal{D}\bar{\theta}(\tau)\mathcal{D}\theta(\tau) \times \]
\[\times \exp \left\{ iS_{full} [\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau)] \right\}, \quad (26) \]

where action

\[S_{full} [\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau)] = \]
\[= S_f [\bar{\theta}(\tau), \theta(\tau)] + S_b [\alpha^*(\tau), \alpha(\tau)] + S_{int} [\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau)]. \quad (27) \]
Functional approach for the description of vacuum influence on electron states

The kernel of evolution operator as a path integral

Action of fermionic field:

\[S_f \left[\bar{\theta}(\tau), \theta(\tau) \right] = \int_{t_{in}}^{t_f} \left(\frac{\dot{\bar{\theta}}(\tau)\theta(\tau) - \bar{\theta}(\tau)\dot{\theta}(\tau)}{2i} - \omega^{(f)}\bar{\theta}(\tau)\theta(\tau) \right) d\tau \] (28)

Action of bosonic field:

\[S_b \left[\alpha^*(\tau), \alpha(\tau) \right] = \int_{t_{in}}^{t_f} \left(\frac{\dot{\alpha}^*(\tau)\alpha(\tau) - \alpha^*(\tau)\dot{\alpha}(\tau)}{2i} - \omega^{(b)}\alpha^*(\tau)\alpha(\tau) \right) d\tau \] (29)

Action of interaction part:

\[S_{int} \left[\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau) \right] = \int_{t_{in}}^{t_f} e^{j\mu} (\bar{\theta}(\tau), \theta(\tau)) (\varepsilon^*_\mu \alpha^*(\tau) + \varepsilon_\mu \alpha(\tau)) d\tau; \] (30)
Evolution of density matrix in paths integral formulation

We have

\[
\rho(\alpha_f^*, \theta_f, \alpha_f', \theta_f'; t_f) = \int \frac{d^2 \alpha_{in}'}{\pi} \frac{d^2 \theta_{in}'}{\pi} \frac{d^2 \alpha_{in}}{\pi} \frac{d^2 \theta_{in}}{\pi} \rho(\alpha_{in}^*, \theta_{in}, \alpha_{in}', \theta_{in}'; t_{in}) \times \\
\times \mathcal{D} \alpha^* \mathcal{D} \alpha \mathcal{D} \bar{\theta} \mathcal{D} \theta \mathcal{D} \alpha' \mathcal{D} \theta' \mathcal{D} \bar{\theta}' \mathcal{D} \theta' \times \\
\times \exp \left\{ i \left(S_{full} \left[\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau) \right] - S_{full} \left[\alpha'^*(\tau), \alpha'(\tau), \bar{\theta}'(\tau), \theta'(\tau) \right] \right) \right\},
\]

(31)
Fermionic density matrix and influence functional

\[\rho(\tilde{\theta}_f, \theta'_f; t_f) = Sp_{\alpha_f=\alpha'_f} \rho(\alpha^*_f, \tilde{\theta}_f, \theta'_f, \alpha'_f; t_f) = \int \mathfrak{D}\tilde{\theta}(\tau) \mathfrak{D}\theta(\tau) \mathfrak{D}\tilde{\theta}'(\tau) \mathfrak{D}\theta'(\tau) d\theta'_in d\theta_{in} \times \]

\[\times \exp \left\{ i \left(S_f[\tilde{\theta}(\tau), \theta(\tau)] - S_f[\tilde{\theta}'(\tau), \theta'(\tau)] \right) \right\} F[\theta(\tau), \theta'(\tau)] \]

where \(F[\tilde{\theta}(\tau), \theta'(\tau)] \) is influence functional of electromagnetic field on fermionic subsystems.

\[F[\tilde{\theta}(\tau), \theta'(\tau)] = Sp_{\alpha_f=\alpha'_f} \int \mathfrak{D}\alpha^*(\tau) \mathfrak{D}\alpha(\tau) \mathfrak{D}\alpha^*(\tau) \mathfrak{D}\alpha'(\tau) \frac{d^2\alpha_{in}}{\pi} \frac{d^2\alpha'_{in}}{\pi} \rho(\alpha^*_{in}, \tilde{\theta}_{in}, \alpha'_{in}, \theta'_{in}; t_{in}) \times \]

\[\times \exp \left\{ i \left(S_b[\alpha^*(\tau), \alpha(\tau)] + S_{int} [\alpha^*(\tau), \alpha(\tau), \tilde{\theta}(\tau), \theta(\tau)] - S_b[\alpha'^*(\tau), \alpha'(\tau)] - S_{int} [\alpha'^*(\tau), \alpha'(\tau), \tilde{\theta}'(\tau), \theta'(\tau)] \right) \right\} \]

In many cases, we can choose at initial moment \(t_{in} \)

\[\rho(\alpha^*_{in}, \tilde{\theta}_{in}, \alpha'_{in}, \theta'_{in}; t_{in}) = \rho_f(\tilde{\theta}_{in}, \theta'_{in}; t_{in}) \times \rho_b(\alpha^*_{in}, \alpha'_{in}; t_{in}) \]

(34)
Influence functional of electromagnetic field

The Feynman-Vernon influence functional

\[F[\begin{array}{c} \theta(\tau), \theta'(\tau) \end{array}] = \int S_p_{\alpha_f=\alpha'_f} \frac{d^2\alpha_{in}}{\pi} \frac{d^2\alpha'_{in}}{\pi} \times \]

\[\times U_{infl}(\alpha^*_f, \bar{\theta}_{in}, \theta_{in}, t_{in}) \rho(\alpha^*_in, \bar{\theta}_{in}, \alpha'_{in}, \theta'_{in}; t_{in}) U_{infl}^*(\alpha'_f, \theta'_{f}, t_{f} | \alpha^*_in, \bar{\theta}_{in}; t_{in}) \] (35)

where \(U_{infl}(\alpha^*_f, \bar{\theta}_{in}, \theta_{in}, t_{in}) \) is electromagnetic field transition amplitude from initial state \(|\alpha_{in}\rangle \) to final state \(|\alpha^*_f\rangle \) inducing by external source \(j \):

\[U_{infl}(\alpha^*_f, \bar{\theta}_{in}, \theta_{in}, t_{in}) = \int \mathcal{D}\alpha^*(\tau) \mathcal{D}\alpha(\tau) \exp \{i S_{infl}[\alpha^*(\tau), \alpha(\tau), \theta(\tau)]\} \] (36)

where \(S_{infl} [\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau)] = S_b [\alpha^*(\tau), \alpha(\tau)] + S_{int} [\alpha^*(\tau), \alpha(\tau), \bar{\theta}(\tau), \theta(\tau)] \). In general, influence functional (26) describes the influence (action) of electromagnetic field on fermionic field.
Functional approach for the description of vacuum influence on electron states

The Feynman-Vernon influence functional

Functional integration over electromagnetic field paths

\[
U_{\text{infl}}(\alpha^*_f, \bar{\theta}_f, t_f | \alpha_{\text{in}}, \theta_{\text{in}}, t_{\text{in}}) = \exp \left\{ e^{-\omega(t_f-t_{\text{in}})} \alpha^*_f \alpha_{\text{in}} - e^2 \int_{t_{\text{in}}}^{t_f} \int_{t_{\text{in}}}^{\tau} \varepsilon^\mu j^+_\mu(\tau) \varepsilon^{*\nu} j^-\nu(\tau') e^{i\omega(\tau-\tau')} d\tau d\tau' - \\
- \iota \alpha_{\text{in}} e \int_{t_{\text{in}}}^{t_f} \varepsilon^\mu j^+_\mu(\tau) e^{-\omega(\tau-t_{\text{in}})} d\tau - \iota \alpha^*_f e \int_{t_{\text{in}}}^{t_f} \varepsilon^{*\mu} j^-\mu(\tau) e^{-\omega(t_f-\tau)} d\tau \right\}
\] (37)

For multimode field and two polarizations without interaction between modes

\[
U_{\text{infl}} = \prod_{k, \lambda} U_{\text{infl}}^{(k, \lambda)}
\] (38)
Functional approach for the description of vacuum influence on electron states

The Feynman-Vernon influence functional

\[U_{inf\ell}(\alpha_f^*, \bar{\theta}_f, t_f | \alpha_{in}, \theta_{in}, t_{in}) = \]

\[= \prod_{k, \lambda = 1, 2} \exp \left\{ e^{-\omega_k(t_f-t_{in})} \alpha_{k\lambda}^{(f)*} \alpha_{k\lambda}^{(in)} - \frac{e^2}{2\omega_k V} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \varepsilon^\mu_\lambda j_\mu^+(k, \tau) \varepsilon^*\nu_\lambda j_\nu^-(k, \tau') e^{i\omega_k(\tau-\tau')} d\tau d\tau' - \right. \]

\[\left. - i\alpha_{k\lambda}^{(in)} \frac{e}{\sqrt{2\omega_k V}} \int_{t_{in}}^{t_f} \varepsilon^\mu_\lambda j_\mu^+(k, \tau) e^{-i\omega_k(\tau-t_{in})} d\tau - i\alpha_{k\lambda}^{(f)*} \frac{e}{\sqrt{2\omega_k V}} \int_{t_{in}}^{t_f} \varepsilon^*\nu_\lambda j_\nu^-(k, \tau) e^{-i\omega_k(t_f-\tau)} d\tau \right\} = \]

\[= \exp \left\{ \sum_{k, \lambda} \left(e^{-\omega_k(t_f-t_{in})} \alpha_f^* \alpha_{in} - \frac{e^2}{2\omega_k V} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \varepsilon^\mu_\lambda j_\mu^+(k, \tau) \varepsilon^*\nu_\lambda j_\nu^-(k, \tau') e^{i\omega_k(\tau-\tau')} d\tau d\tau' - \right. \]

\[\left. - i\alpha_{in} \frac{e}{\sqrt{2\omega_k V}} \int_{t_{in}}^{t_f} \varepsilon^\mu_\lambda j_\mu^+(k, \tau) e^{-i\omega_k(\tau-t_{in})} d\tau - i\alpha_f^* \frac{e}{\sqrt{2\omega_k V}} \int_{t_{in}}^{t_f} \varepsilon^*\nu_\lambda j_\nu^-(k, \tau) e^{-i\omega_k(t_f-\tau)} d\tau \right) \right\} \]
Vacuum influence functional

For the case when initial and final states of electromagnetic field are vacuum:

\[
\phi_{in}(\alpha_{in}) = \langle \alpha_{in} | 0 \rangle = \exp \left\{ -\frac{1}{2} |\alpha_{in}|^2 \right\}, \quad \phi^*_{f}(\alpha_{f}) = \langle 0 | \alpha_{f} \rangle = \exp \left\{ -\frac{1}{2} |\alpha_{f}|^2 \right\}.
\] \((40) \)

We define influence functional of electromagnetic vacuum

\[
F_{\langle vac|vac\rangle} [\bar{\theta}(\tau), \theta'(\tau)] = \int \frac{d^2 \alpha_{f}}{\pi} \frac{d^2 \alpha'_{f}}{\pi} \frac{d^2 \alpha_{in}}{\pi} \frac{d^2 \alpha'_{in}}{\pi} \rho_f(\bar{\theta}_{in}, \theta'_{in}; t_{in}) \times \\
\times \phi^*_{f}(\alpha_{f}) U_{inf}(\alpha^*_{f}, \bar{\theta}_{f}, t_f | \alpha_{in}, \theta_{in}, t_{in}) \phi_{in}(\alpha_{in}) \phi^*_{in}(\alpha'_{in}) U_{inf}^*(\alpha'_{f}, \theta'_{f}, t_f | \alpha^*_{in}, \bar{\theta}'_{in}; t_{in}) \phi_{f}(\alpha'_{f}) = \\
= \exp \left\{ -\sum_{k, \lambda} \frac{e^2}{2\omega_k V} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \left(\varepsilon^{\mu} j^+_\mu(k, \tau) \varepsilon^*_{\lambda} j^-_{\lambda}(k, \tau') e^{i\omega_k(\tau-\tau')} d\tau d\tau' + \varepsilon^{\mu} j^+_\mu(k, \tau) \varepsilon^*_{\lambda} j^-_{\lambda}(k, \tau') e^{-i\omega_k(\tau-\tau')} d\tau d\tau' \right) \right\} \quad \text{(41)}
\]
The Influence Functional of electromagnetic vacuum

\[
F_{\langle \text{vac}|\text{vac}\rangle}[\bar{\Theta}(\tau), \Theta'(\tau)] =
\exp \left\{ - \sum_{\mathbf{k}, \lambda} \frac{e^2}{2\omega_k V} \int_{t_{\text{in}}}^{t_f} \int_{t_{\text{in}}}^{\tau} \left(\varepsilon_{\lambda}^\mu \mathcal{J}^+_{\mu} (\mathbf{k}, \tau) \varepsilon^*_\lambda \mathcal{J}^-_{\nu} (\mathbf{k}, \tau') e^{i\omega_k (\tau - \tau')} d\tau d\tau' + \varepsilon_{\lambda}^\mu \mathcal{J}^{+'+}_{\mu} (\mathbf{k}, \tau) \varepsilon^*_{\lambda} \mathcal{J}^{'+-}_{\nu} (\mathbf{k}, \tau') e^{-i\omega_k (\tau - \tau')} d\tau d\tau' \right) \right\} \quad (42)
\]
From sum over k to integral:

$$F_{\langle vac|vac\rangle}[\bar{\theta}(\tau), \theta'(\tau)] = \exp \left\{ -\frac{e^2}{(2\pi)^3} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \int_{t_{in}}^{\tau} \int \frac{1}{2\omega_k} \left[\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu} \right] j_{\mu}^{-}(k, \tau) j_{\nu}^{-}(k, \tau') e^{i\omega(\tau-\tau')} dk d\tau d\tau' + \frac{1}{2\omega_k} \left[\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu} \right] j_{\mu}^{'+}(k, \tau) j_{\nu}^{'+}(k, \tau') e^{-i\omega(\tau-\tau')} dk d\tau d\tau' \right\}$$

(43)
Fermionic density matrix with electromagnetic vacuum influence

\[
\rho(\theta_f, \theta'_f; t_f) = \int \mathcal{D}\theta(\tau)\mathcal{D}\theta'\mathcal{D}\bar{\theta}(\tau)\mathcal{D}\bar{\theta}'(\tau) d\theta'_{in} d\theta_{in} \times \\
\exp \left\{ i \left(S_f[\bar{\theta}(\tau), \theta(\tau)] - \frac{e^2}{(2\pi)^3} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \int \frac{1}{2\omega_k} \left[\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon^{*\nu}_{\lambda} \right] j_\mu^+(k, \tau) j_\nu^-(k, \tau') e^{i\omega(\tau-\tau')} dk d\tau d\tau' \right) \right\} - (44) \\
- S_f[\bar{\theta}'(\tau), \theta'(\tau)] - \frac{e^2}{(2\pi)^3} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \int \frac{1}{2\omega_k} \left[\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon^{*\nu}_{\lambda} \right] j_\mu'(k, \tau) j_\nu'(k, \tau') e^{-i\omega(\tau-\tau')} dk d\tau d\tau' \right\} - (45)
\]
We can write the density matrix in coordinate representation by wave functions:
\[
\rho_f^\dagger (\vec{\theta}_f, \theta_f) \Rightarrow \rho_f^\dagger (\bar{\psi}_f(x), \psi_f(x))
\]
We present the influence functional of electromagnetic vacuum in coordinate representation by the following
\[
-\frac{e^2}{(2\pi)^3} \int_{t_{in}}^{t_f} d\tau \int_{t_{in}}^{\tau} d\tau' \int \frac{1}{2\omega_k} \left\{ \sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu} \right\} j_\mu^+(k, \tau) j_\nu^-(k, \tau') e^{i\omega(\tau-\tau')} dk d\tau d\tau' =
\]
\[
= -\frac{e^2}{(2\pi)^3} \int_{t_{in}}^{t_f} d\tau \int_{t_{in}}^{\tau} d\tau' \int \frac{1}{2\omega_k} \left\{ \sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu} \right\} j_\mu(x, \tau) j_\nu(x', \tau') e^{-ik(x-x')} e^{i\omega(\tau-\tau')} dx dx' dk d\tau d\tau' =
\]
\[
= -\frac{e^2}{4\pi\nu} \int_{t_{in}}^{t_f} d\tau \int_{t_{in}}^{\tau} d\tau' \int \int \left\{ \frac{1}{(2\pi)^3} \int \frac{2\pi idk}{\omega_k} \left(\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu} \right) e^{-ik(x-x')} e^{i\omega(\tau-\tau')} dk \right\} j_\mu(x, \tau) j_\nu(x', \tau') dx dx' d\tau d\tau' D_{\mu\nu}(x-x', \tau-\tau')
\]
where \(D_{\mu\nu}(x-x', \tau-\tau')\) is photon propagator.

\(^1\) V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii Quantum Electrodynamics
Influence functional in coordinate representation

\[
F_{\langle \text{vac} | \text{vac} \rangle}[\theta(\tau), \theta'(\tau)] = \exp \left\{ -\frac{e^2}{4\pi \hbar} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \int j_{\mu}(x, \tau) D^{\mu\nu}(x - x', \tau - \tau') j_{\nu}(x', \tau') d\tau d\tau' - \\
- \frac{e^2}{4\pi \hbar} \int_{t_{in}}^{t_f} \int_{t_{in}}^{\tau} \int j_{\mu}'(x, \tau) D^{\mu\nu}(x - x', \tau - \tau') j_{\nu}'(x', \tau') dx dx' d\tau d\tau' \right\}
\]

(46)

For \(t_f \to \infty, t_{in} \to -\infty \) we have relativistic invariant influence functional of electromagnetic vacuum:

\[
F_{\langle \text{vac} | \text{vac} \rangle}[\bar{\theta}(\tau), \bar{\theta}'(\tau)] = \exp \left\{ -\frac{e^2}{4\pi \hbar} \int \int \left(j_{\mu}(x) D^{\mu\nu}(x - x') j_{\nu}(x') + j_{\mu}'(x) D^{\mu\nu}(x - x') j_{\nu}'(x') \right) d^4 x d^4 x' \right\}
\]

(47)
Fermionic density matrix evolution in coordinate representation

\[
\rho(\bar{\psi}_f, \psi_f'; t_f) = \int \mathcal{D}\bar{\psi}(\tau)\mathcal{D}\psi(\tau)\mathcal{D}\bar{\psi}'(\tau)\mathcal{D}\psi'(\tau)\rho_f(\psi_{in}, \psi'_{in}; t_{in}) \times \\
\times \exp \left\{ i \left(S_{full}[\bar{\psi}(\tau), \psi(\tau)] - S_{full}[\bar{\psi}'(\tau), \psi'(\tau)] \right) \right\}
\]

where \(S_{full}[\bar{\psi}(x), \psi(x)]\) is given by

\[
S_{full}[\bar{\psi}(\tau), \psi(\tau)] = \int L_{fullvac}(\bar{\psi}(x), \psi(x)) \, dx
\]

where Lagrangian density is

\[
L_{fullvac}(\bar{\psi}(x), \psi(x)) = L_F(\bar{\psi}(x), \psi(x)) + L_{vac}(\bar{\psi}(x), \psi(x))
\]

\[
L_F(\bar{\psi}(x), \psi(x)) = \bar{\psi}(x) \left(i\gamma^\mu \frac{\partial}{\partial x_\mu} - m + U(\vec{r}) \right) \psi(x)
\]

\[
L_{vac}(\bar{\psi}(x), \psi(x)) = \frac{e^2}{4\pi} \bar{\psi}(x) \gamma_\mu \psi(x) \int D^{\mu\nu}(x - x') j_\nu(x')dx'
\]
Quantum transition amplitude of electron in this model presents as path integral

$$K(\psi(+\infty)|\psi(-\infty)) = \int \exp \left[iS_{\text{full}} (\bar{\psi}(x), \psi(x)) \right] D\bar{\psi}(\tau)D\psi(\tau)$$ \hspace{1cm} (53)$$

We find an equation for \(\psi(x)\) by the use of quasiclassal approximation [Feynman]

$$\delta S_{\text{full}} \left[\bar{\psi}(\tau), \psi(\tau) \right] = 0$$ \hspace{1cm} (54)$$

We consider an electron in a bound state (with potential energy \(U(\vec{r})\)). We find an equation for \(\psi(x)\) by the use of (54) in the following form

$$\left(i\gamma^\mu \frac{\partial}{\partial x_\mu} - m + U(\vec{r}) \right) \psi(x) + \frac{e^2}{4\pi} \gamma_\mu \psi(x) \int D^{\mu\nu}(x-x') j_\nu(x') dx' = 0$$ \hspace{1cm} (55)$$

The equation (55) is nonlinear.
We write the equation in the form \(^2\)

\[
\frac{i}{\hbar} \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left(c\alpha \hat{p} + \beta mc^2 + U(\vec{r}) \right) \psi(\vec{r}, t) + \frac{e^2}{4\pi} \gamma_\mu \psi(x) \int D^{\mu\nu} (x - x') j_\nu(x') dx'
\]

(56)

We present \(\psi(\vec{r}, t) = e^{-\frac{i}{\hbar} E t} \psi_E(\vec{r})\).

Then

\[
E \psi_E(\vec{r}) = \left(c\alpha \hat{p} + \beta mc^2 + U(\vec{r}) \right) \psi_E(\vec{r}) + \frac{e^2}{4\pi} \gamma_\mu \psi(x) \int D^{\mu\nu} (x - x') j_\nu(x') dx'
\]

(57)

The equation (57) allows us to find the energy \(E\) and wave function \(\psi_E(\vec{r})\) of an electron with the influence of vacuum fluctuations.

\(^2\)Quantum electrodynamics by A. I. Akhiezer, V. B. Berestetskii
In nonlinear equation (57) the second term is small. Then (57) we present as

$$E \psi_E (\vec{r}) = (c\vec{\alpha}\hat{p} + \beta mc^2 + U(\vec{r})) \psi_E (\vec{r})$$ \hspace{1cm} (58)$$

For a spherically symmetric potential $U = -\frac{Ze^2}{r}$ we have E_{nj} and ψ_{nj} where $j = l + 1/2$, l — orbital quantum number, n — principal quantum number.

$$E_{nj} \psi_{nj} (\vec{r}) = (c\vec{\alpha}\hat{p} + \beta mc^2 + U(\vec{r})) \psi_{nj} (\vec{r})$$ \hspace{1cm} (59)$$

We assume that the values found by solving the equation (59) are the first approximation in the solution of equation (57). We find electron energy with the influence of vacuum fluctuations from equation (57)

$$E_{nj}^{vac} \psi_{nj} = (c\vec{\alpha}\hat{p} + \beta mc^2 + U(r)) \psi_{nj} + \frac{e^2}{4\pi} \gamma_\mu \psi_{nj} (r, \theta, \phi) \int D^{\mu\nu} (x - x') j_\nu (x') dx'$$ \hspace{1cm} (60)$$
We multiply the equation from the left by $\bar{\psi}(r, \theta, \phi)$ and using the equation (59). Then we integrate over $r, \theta, \phi \ (\int \bar{\psi}_{nj}(x)\psi_{nj}(x)dx = 1)$. After that we find E_{nj}^{vac}:

$$E_{nj}^{\text{vac}} = E_{nj} + \frac{e^2}{4\pi} \int \int \bar{\psi}_{nj}(x)\gamma_{\mu}\psi_{nj}(x)D^{\mu\nu}(x - x')j_{\nu}(x')dx'$$ \hspace{1cm} (61)

The equation (61) describe electron energy E_{nj}^{vac} in quantum state $\psi_{nj}(x)$ with the influence of vacuum fluctuations. The corresponding energy shift has the following form

$$\Delta E_{nj}^{\text{vac}} = \frac{e^2}{4\pi} \int \int \bar{\psi}_{nj}(x)\gamma_{\mu}\psi_{nj}(x)D^{\mu\nu}(x - x')j_{\nu}(x')dx'$$ \hspace{1cm} (62)
Thanks for your attention!