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Pole masses of heavy quarks
The full bare quark propagator has the following form:

Sk =17 mog — (k)

where ¥ is the one-particle irreducible fermion self-energy operator,
mo,q is the unrenormalized bare mass of the ¢g-th quark.

S (k) = moS1(k2) + (k — mo o) S2(k?)

From the on-shell mass condition (k —mq, — 2(k)) =0
k2=M2
one can find: ’
My = moq(1 + 21 (M7)) -

Thus this allows to obtain the relation between bare and pole mass of
heavy quarks:

(O}
mo’q = Zm Mq .
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Running heavy quark mass

Similarly, the analogous relation between bare and running mass in the
MS-scheme can be written as:

mo,q = an\fs mlI(:U’?) 3

with scale parameter u, appearing in the framework of dimensional
regularization.
Further we define the following RG-quantities:

Blay) = 28(3 (O‘SW ) 2/3@(0‘8) :

mle) = g o) = - > (%)
=0

where B(as) and v, (as) are calculated at present in analytical form at
the 5-loop order in the MS-scheme.
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Running heavy quark mass

The evolution of the running mass is described by the following
equation (as/m = ag):

~ ‘7‘5([“2) 6
mq(NQ) — ex Y () _ ny, 2
mq(uz)—ep (/)da: B(x) —l—l—z_:bnas(,u)’
as(p?
by = ol , ba %(50 +70) %+l
bs = 3 (/304"70 (50*‘%)1 <ﬂ1—+’y1ﬂo+’yl’yo>l + vl ,
by = %(50 + ) (50 + %) (50 + - ) < B1Bov0 + 512’)’0

+  71(Bo +0) ( %)) (52— +mbB1+ 7 + ’7250 + ’72’70)12
log

+ vl where [ =
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Running heavy quark mass

13
by = E(ﬁo + ) <50 + %) (50 + ?) <50 + )l5 (’Ylﬂg + 1_2705153
13 11 1
+ 26150 + 7071% + %1 B0 + 5170 + 67170>l4

1
0Bt + 28372 + Bovi

7 3
+ (705250 + 2708072 + 5’71,31,30 + 5707151 + 5

1 1 1 3
=YoVi + 572%2)>l3 + <§W’oﬁ3 + 7152 + 55172 + 2803

1 2
+ 552“/0 +5

+ M2+ 7073)12 + 4l ,

where four-loop terms 35 and ~3; were calculated by (Ritbergen, Vermaseren,
Larin, 1997) and five-loop coefficient 74 was computed by (Baikov, Chetyrkin,
Kiihn, 2014).
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Running heavy quark mass

e en(ns3)(ae3)(s 0 3) (02

1

+ (Eﬁwél + B + ﬂvwé + 3555173 + ﬂﬂgvgw + gﬁoﬁwg

7 5 25 1 5 1
- @BS,BWO + 15 Porm + fﬁf‘?%vl)lf’ - (Zﬂwg + 58072 + g0

3 1 35 5 47
+ §ﬂ + /31’70 + 4’787% + ﬂﬁOﬂ%WO + 1/30/32’73 + 55(2)51’71

3 2 2 2 2 37 o 25 "
+ §ﬂoﬁ270 + 1507071 + 1/30’7072 + Bivom + 550’70’72 + gﬁoﬂﬂoﬁ’l l

4 1 10 1 1 9 8
+ <6wf + gﬁf% + 55373 + 35373 + 57373 + g’ﬁ + gﬁoﬁm + gﬁoﬂﬂl

7 7 5 5 3
+ 6/5053’)’0 + gﬁh@z’yo + 5,307073 + 5/507172 + 26817072 + 5ﬁ2’)’071
s (1, 3 5 1
+  yoyiy2e JUU + 32 + 552’72 + 550’)’4 + 26173 + B3 + 5,34')’0 + Yoya

+ 7173)12 + sl , where (1 is known by (Baikov, Chetyrkin, Kihn, 2017).
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MS-on-shell mass relation

Now define the z,,-ratio:

N U — (i) i 2
Zm (W) = =_==1+) zja).
m Mq Z%IS ;

Wherein, all renormalized coupling constants are expressed in terms of
a single constant (in the MS-scheme).

o (y_ B (BB B 1B , B
:“2as<1—?0as+<g—g—2—;>ag (E_g_ 6;2°+3_§>a§+...).
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MS-on-shell mass relation

Coeflicients zy(,i) with 1 < ¢ < 3 are calculated in analytical form for
gauge color SU(N,)-group. For case of the SU.(3)-group with Casimir
operator Cp = 4/3, Ca = 3 ((t*t*)ij = Crdij, facd fbed — 4 57%) at the
renormalization point p? = Mq2:

4
2D = —3 (Tarrach, 1981)

2 = _14.3323 +1.04136n; , (Gray, Broadhurst ... 1990)
203 = —198.706 4 26.9239n; — 0.65269n7 (Melnikov, Ritbergen, 2000)

and independently (Chetyrkin, Steinhauser, 2000).

We define n; = ny — 1, n; is the number of massless quarks.

Analytic expression for the zg)—term contains not only Riemann

o0
zeta-functions (,= > k=" up to n = 5, but also polylogarithmic
k=1

[ee)
function Li,(z) = . 2"k~ with n =4 and 5 at = = 1/2.
k=1
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z,(;f )—coefﬁcient

Separately consider the four-loop term zﬁé). Like any-order term zﬁ,?, it

can be expanded in powers of n;:

1) _ (0)

o 41)

+ zﬁn n;+ zﬁ,‘fz)n% + z,(ﬁ:g)n? .

In this expression the last two coeflicients are known analytically (Lee,
Marquard, Smirnov A.V., Smirnov V. A., Steinhauser, 2013), and the

first two, namely the constant contribution zﬁfo) and the linear

(41)

dependent on n; term 2, ', are not yet computed analytically:

2 = 10 4 Uy 43482407 +0.67814n7 .
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z,(;f )—coefﬁcient

In the work of (Marquard, Smirnov A., Smirnov V., Steinhauser, Wellmann, 2016)
the values of the four-loop correction 27(,%) were obtained at fixed number n; in the
wide region 0 < n; < 20. To extract the unknown coefficients zﬁfo) and zﬁﬁl) we use
the least squares method (LSM) as a method of solving the overdetermined system
of equations. However, we propose to consider the Banks-Zaks ansatz-motivated

values of n; only (Bo(nys) > 0), namely 3 < n; < 15:

1 3 —1383.33 4+ 1.74
1 4 —626.38 + 1.77
1 5 130.56 + 1.80
1 6 887.50 + 1.84
17 (40) 1644.45 + 1.87
1 8| ("™ 2401.39 + 1.91
1 9 — | 3158.33+1.94
1 10 () 3915.27 + 1.98
1 11| \om 4672.22 + 2.01
1 12 5429.15 + 2.05
1 13 6186.09 + 2.08
1 14 6943.03 + 2.12
1 15 7699.98 + 2.16
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Application of the least squares method

We introduce the ®-function, which is equal to the sum of the squares
of the deviations of all equations in the system. Under the solution we

mean such values 2&10) and zﬁn ) for which the ®-function has the
minimum:
21
@(zﬁéo),zﬁ,‘fl) ZAQ Z (40) | (41)nzk _ yzk)Q
k=1
0P 0P
=0, =0.
827(30) 825{‘{1)
13 13
Az,(fllo) = 1

> A

13 2
2 2
yzk( E Ny, — Ny, E nl)
i=1

13 13 2 -
135 nl2k — < nlk) k=1 i=1
k=1 k=1
1 13 13 2
Az = — — i D Ay (13nlk - an)
133 nlzk — < 3 nlk) k=1 i=1
k=1 k=1
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Numerical results for zfﬁfo) and z%l)—terms and their

uncertainties
The LSM allows us to obtain the following values:
Z90(M2) = —3654.14 + 1.34, 201 (M?2) = 756.94 + 0.15.

which agrees with the results of (Marquard, Smirnov A. ... 2016) for 2(40)-term,

m
obtained without considering the correlation of equations of the overdetermined
system at n; = 0:

290(M2) = —3654.15 + 1.64, 25 (M2) = 756.942 + 0.040.

The previous values, obtained in the work of (Kataev, Molokoedov, 2016) with using
three points only (n; = 3,4,5 and taken from (Marquard, Smirnov A., Smirnov V.,
Steinhauser, 2015)), read:

250(M2) = —3642.9 £ 62.0, 25 (M2) = 757.05 + 15.20.
One can see that compared with the inaccuracies of the 240 and 24V -terms their
central values vary slightly. Thus:

Mg (M) =~ My(1 — 1.33333as + (1.0414n; — 14.332)a’+
+(—0.6527n; + 26.924n; — 198.71)a>+
+(0.6781n) — 43.482n] + (756.94 + 0.15)n;—3654.14 + 1.34)a? + O(a?))
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Asymptotic structure

Shifting p? = M(? — mg one can find the following expansions of the

pole masses of ¢,b and t-quarks (as = as(mg)/ﬂ):

M, =~ mm.(m?)(1+ 1.3333 @, + 10.318 @ + 116.49 @ + (1702.70 £+ 1.41) @?) ,
M, =~ my(my)(1+ 1.3333 @, + 9.277 @2 + 94.41 a§ + (1235.66 +1.47)al),
M; =~ m(m:)(1+ 1.3333 @, + 8.236 a- + 73.63 @> + (839.14 + 1.54) a?) .

These expressions demonstrate the property of the asymptotic structure of
the perturbative QCD series. Indeed, one can see that all relations contain
significantly growing and strictly sign-constant coefficients.

For numerical studies we use the average PDG(16) values of the running
masses of ¢ and b-quarks, namely m,.(m?2) = 1.280 + 0.030 GeV,

7y, (7) = 4.18070:020 GeV. For top quark we assume 77, (712) = 163.5 GeV
that does not contradict the data presented in PDG(16). As the initial
normalization point we take (M%) = 0.1182 at Mz = 91.1876 GeV.
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N3LO numerical analysis
A=Y = 989 MeV | au (L) = 0.3818
(ny=4)
Asrs

(n;=5)
AW

211 MeV ,  a.(mz) = 0.2252 ,

90 MeV ,  as(m;) = 0.1087 .

Q

1.28 +0.207 4+ 0.195 + 0.268 + 0.475 £ 0.040 ,

%

4.18 4+ 0.399 + 0.199 + 0.145 + 0.13615:536

0.034 >

~ 163.5+4+7.543 +1.612+40.499 4+ 0.197 = 173.351 .
1 GeV

For c-quark pole mass its PT series has explicit asymptotic structure, beginning
with 2-3 loop order. Therefore at these levels of PT one should use the concept of
the running mass of c-quark. For b-quark it is possible to use the pole mass up to
four-loop level. For t-quark at the O(a?) level the concept of pole mass is well
defined. The uncertainty of the measured ¢-quark mass is about 650 — 750 MeV:
M{™ =~ 174.30 £ 0.35(stat) + 0.54(syst) GeV (Tevatron, (I+jets)-channel, 2018);

M™P ~ 173.34 4+ 0.27(stat) + 0.71(syst) GeV (combination of results ATLAS, CMS,
2014).
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MS-on-shell relation in QED
Using the U(1)-limit of the QCD results with SU(N,) gauge group we obtain
that the O(a*) contribution to the z,,-ratio can be represented as:

20 e (MP) = 4.06885n7 — 2.3576n7 + (—4.097 £ 0.178)n; — 10.761 + 1.030 .

Thus, for e, u and 7-leptons the following expansions hold at u? = M?:

M, =~ M (M?)(1+a+1.66591a® — 2.02839a> + (5.482 4 1.030)a”) ,
My (M2)(1+ a+ 0.10386a* — 3.96938a° + (5.907 +1.045)a")
e (M2)(1 + a — 1.45819a2 — 1.99421a> + (—0.653 & 1.090)a”) .

E
Q2

or at p® =Tm.:

M, =~ m.(m2)(1+a+0.16591a? — 2.13144@> + (7.487 4+ 1.030)a*) ,
M, ~ my,(m,)(1+a—1.39614a" — 0.64601a° + (3.169 & 1.045)a") ,
M, =~ m,(m2)(1+a— 2.95819a> + 4.75557a@° + (—21.238 & 1.090)a*) .

The presented formulas demonstrate the absence of any sign-constant or
sign-alternating structure of series of PT in QED for MS-on-shell relation.
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Estimates of the multiloop corrections by the
ECH-motivated method

The effective charges (ECH)-motivated method (Kataev, Starshenko,
95) gives possibility to estimate high-order corrections to the mass
conversion formula (Kataev, Kim, 2010). We start from the Euclidean
region with 2 = Q? and take into account effects of the analytical
continuation to the Minkowskian space with u? = s.

As the associated RG function, determined in the Euclidean region, we
put F(Q?)-function, related to its image T'(s) in the Minkowskian space
through the Kéllen-Lehmann type spectral representation (Chetyrkin,
Kniehl, Sirlin, 1997):

o0

_ _T(s)
F(Q%) _Q2O/dS(S+Q2)2 )
T(s) =my(s) > ty'ai(s), F(Q*) =my(Q%))  fral(Q?) .
n=0 n=0
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m2-effects
The integration gives:

{1,1,12 Pty a2, T G
/ G102 = 1,2,2+3,2+7T22+27r2+15
10 , 31 61

with I = log(u?/s) and £ = log(u?/Q?).

Fixing 42 = Q? we obtain the relation between the above mentioned coefficients ¢t
and fZ with given from integration mw2-effects. This relation can be written as

JE =M 4+ A, and is presented as:

2

Ay = 0, A1 =0, Ag = %’Yo(ﬁo +’Vo)téw ;
71'2 M 1 M 1
Az = 3|1 (Bo +0) | Bo + 3% )+t 55170 +780+mv ||
2
5 1 3 5
Ay = 7; {té\/l <3ﬂ§ + iﬁo’yo + 573) + (551’)’0 + 5,31,30 + 27180 + 71’70)
+

1 1, 3 Tt 1
552% +76:1 + o+ §Vzﬁo +3270 | | + 5gto Y0 (Bo +v0) | Bo + 370
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w2 effects

7T2

7 1 5
As = {té\l <6/3§ + 5,30’70 + 573) + 3" <7ﬂ1ﬁ0 + 37160 + 55170 + ’Yl’Yo)

3
M
1

_l’_

3 1 5 3
<§/B% + 5’7% + 38200 + 57250 + 28171 + 55270 + 7270)

1 3
+ (553’70 + Bom + 57251 + 27380 + 1172 + ’70’73)}

Tt

M4, 25,3 35022, 0, 3 1 4
15 |:t1 (50 + 12»30’70 + 245070 + 12ﬂ0’¥0 + 5470

13 13 11 1 1
+ (7163 + 5706163 + ﬁvﬁﬂoﬂl + gﬁo%ﬂg + 75 Bom + 16173 + 57173)]
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+

9 1 27 7
~ {t (10/33 + */3070 + 573) + 3" (*5051 +4Bov1 + *»3170 + 7071>

8B0B2 + 50’72 + 36171 + 5270 +4p7 + 271 + ’70’72)

7
) <§,3053 + 5152 + 3B8oys + ﬁl’Yz + 28271 + ﬁs’Yo + Y03 + 7172)
(2’72 + 52’)’2 + 50’)’4 + 28173 + B3v1 + 5470 + Yoya + ’7173)]
4
7 3 1 77 3
{ (5/30 + 30’70 + /3070 + E/BO% + 24’}’0) + ' <E5051
5 25 13
EBWS + 4857 + 6’73’71 + gﬂoﬂl’ﬁ% + */33,31’70 + *50’7371 + *ﬂ?ﬁﬂl)

67872 + 50’71 + ﬁl’Yo + 47071 + 5051’70

1 5 1
to' ( 2B2% + 5Bz + =
4 2
5 2 47 2 3 2 2 2 2
Zﬁoﬁﬂo + Eﬁoﬁl’)’l + 5/5052’70 + 1/507071 + Zﬁo’Yow + B1vom
37 o 25
Eﬁoﬁ’o’)’? + gﬁoﬂﬂo%)]

6
31127; to" 70 (Bo + o) (ﬁo + %70) (ﬁo + = L ) (50 + jﬂo) (,30 + é%) .
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ECH-motivated approach

For SU.(3) case we have:

As = 5.89434 — 0.274156mn; ,

As = 105.6221 — 10.04477n; + 0.198002n;] ,

Ay = 2272.002 — 403.9489n; + 20.67673n; — 0.315898n; |

As = 56304.639 — 13767.2725n; + 1137.17794n; — 37.745285n; + 0.427523n; |

Ag = 1633115.62 & 347.65 4 (—518511.694 + 56.723)n; + (61128.1666 & 4.7791)n?
+  (—3345.0818 & 0.1371)n} + 85.37937n) — 0.818446n; .

The next stage is to determine the effective charge a2/f(Q?) for Euclidean quantity
F(Q*)/m4(Q%):
F(Q?)
mq(Q?)

=fo + fFad QY Q) =ad(@%)+ D $rai(@Q°),
k=2

where terms ¢y are equal to ¢ = f/fL.
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ECH-motivated approach
After this we can define the ECH S-function for aS’/ (Q?):

Bo, BT =81, B =8~ ¢aBi + (63— 83)Bo ,

,Bgf f
5§f f
ol

Bgf f

B3 — 2¢282 + #5351 + (204 — 6¢203 + 4¢3) 5o
Ba— 3¢2B3 + (45 — ¢3) B2 + (¢4 — 2¢203) A1
(3¢5 — 12¢2hs — 593 + 280503 — 14¢53) B0

Bs — AdaBs + (8¢5 — 2¢3)Bs + (423 — 8¢3) B2
(205 — 8pachs + 160503 — 3¢5 — 665) 1

(4d6 — 20¢2¢5 — 16304 + 488203 — 120¢3¢3
56p3¢4 + 48¢3) B -

The concrete form of the terms ¢t} was not specified by us. We
introduce the following expansion:

o
M, = m,(my) Ztéwa?(mi) :
n=0
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The essence of evaluation

If we would put 526f T~ B, then we would get that
fE~ (52 fE + f£B1/80 and using the relation f¥ =t} + A3 we

would restore the value of téw -term. Similarly, supposing that B;f F~ 53
we could estimate the value of the four-loop contribution t}7:

ng | giesect | M ECH $M, evact ¢M, BCH
3 116.494 124.097 1702.70 £ 1.41 1281.09
4 94.418 97.728 1235.66 £ 1.47 986.13
5 73.637 73.615 839.14 £1.54 719.38
6 54.161 51.775 509.07 &= 1.61 483.02
7 35.991 32.235 241.37 £1.70 279.37
8 19.126 15.034 31.99 £ 1.80 110.71
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The essence of evaluation

Therefore, we have reason to believe that conditions 54” ~ B4 and ﬂsff ~ 5, and
FE =t + A5, fE =t} + Ag allow us to estimate values of t2! and t)-terms with
satisfactory accuracy.

EN2 E rE
g [31‘2 ﬂ3+(f£—4(f2E) )52+(2f2 fs —ff)m}

fi ] fi
Al
= ot (o ()
(oo o () o]
o oS () - ) - ()
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Numerical results

n (M ECH | M, ECH
3 28435 476522
4 17255 238025
5 9122 90739
6 3490 8412
7 -127 -29701
8 -2153 -39432

( MIPT, ITP Landau, INR RAS On the relation between pole and runf \ZilsbRz e h Ve Z 2 0k 25 / 33




Numerical results

Taking into account that the five-loop contribution ¢} can be expanded in
powers of number of massless flavors in the form

tM = tMnd +tMnd + tMn? + tMn; + 28 with unknown variables ¢} — 3 we
obtain the following matrix equation for number of n;, equal to number of
these unknown variables, namely for 3 < n; < T7:

M, ECH

1 3 9 27 81\ [t 28435
1 4 16 64 256 | |20 ECH 17255
1 5 25 125 625 | | ¢4 PO [ = | 9122
1 6 36 216 1296 | | ¢} 2o 3490
1 7 49 343 2401) \ A pon —127

The numerical solution of this system with the Vandermonde matrix can be
written as

2 ECH — 9 5nt — 1360 + 291202 — 26976n, + 86620 .

Repeating the similar reasoning for té‘/f -contribution with 3 < n; < 8, we
obtain

tah FOH — _4.9n% 4 3520} — 9708n] + 13117607 — 855342n; + 2096737 .
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Numerical results

Thus, we arrive to the following expansions within the framework of the ECH
approach:

M,
~ 1.28 +0.207 4+ 0.195 + 0.268 + 0.475 + [ 0.965 + 1.965
1 GeV
M,
T Ge VN418+0399+0199+0145+0136+ 0.136 +0.136
M,
T Go V~1635+7543+1612+0499+0197+ 0.074 + 0.025

The boxed terms are estimated using the method of effective charges. Despite
the fact that these formulas are approximate, they reflect the specific behavior
of the MS-on-shell relation in the higher orders of PT. For b-quark the ECH
approach demonstrates a rather cunning behavior of the PT series for its pole
mass. We observe some kind of the island of stability. The four, five and
six-loop contributions coincide liteIally The series for t-quark shows a
decrease of the O(a2) and O(a®)-contributions. Thus, with a high degree of
probability the concept of pole mass of t-quark can be used even at the
six-loop level. Therefore we can sum all these corrections and we obtain

MECH ~173.45 GeV.
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Comparison with the renormalon-based analysis

The renormalon dominance hypothesis leads to the following factorial growth of the
ta-corrections at y® = T, renormalization point (Beneke, Braun, 94-95)

M. r—n  n—soco n1(n+0b) s1 So
: D20 AN (2 1
o N (260) T+ Tnso—1  mrb-Dm+b-2)

+ (n+b—1)(n+sb3—2)(n+b—3) +O(%)> ’

where T'(x) is the Euler Gamma-function, b = 31/(245). The normalization factor
N,,, depends on n; and on the order of PT and can not be obtained rigorously by
PT.

51 = 4,84 (/Bl /80ﬂ2) 5
52 = W(ﬁi‘ — 28383 — 2B82B2Bo + 4818285 + BB — 2B68)
s3 = 384,312 (Bl 6ﬁ?6§ + 85?@% - 3ﬁfﬁ250 + 185§ﬂ2ﬂ3 - 24ﬁ%ﬂ2ﬂg

+  3BIBIB5 — 65180 — 12615365 + 16618380 — B35 + 86350
+ 6828385 — 8,6’4,5’5) (Beneke, Marquard, Nason, Steinhauser, 2017) .
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Comparison with the renormalon-based analysis

Based on the results (Pineda, 2001), (Beneke, Marquard, ... 2017) we propose
to put NV, &~ 0.5 for charm, bottom and top-quark in five and six-loop
approximation. Thus, we find:

M, r—n M, r—n
ng ts tg

3 31527 768520
4 22335 501230
5) 15089 308590

The obtained values of the five and six-loop corrections outline the following
behavior of the PT series for pole masses of heavy quarks with renormalon
asymptotic:

c

~ 1.28 +0.207 + 0.195 + 0.268 + 0.475 +| 1.070 + 3.170 | ,
1 GeV

M,

~4.18 +0.399 + 0.199 + 0.145 + 0.136 + | 0.177 + 0.284 | ,
1 GeV

M,

~ 163.5 + 7.543 + 1.612 + 0.499 + 0.197 +0.122 + 0.087 | .
1 GeV
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Comparison with the renormalon-based analysis

Renormalon dominance hypothesis with N, &~ 0.5 allows to obtain the
following evaluations:

CGoy © 163.5+ 7543+ 1,612+ 0.499 + 0.197 +[0.122 + 0.087
+ [0.073+0.071 4 0.078 +-0.097 + . .. |

This estimate procedure permit us to understand approximately, from
what level of PT the asymptotic behavior of the QCD series for pole
mass of t-quark begins to manifest itself. The first traces of this effect
can already be observed in the seven order of PT. The eighth and ninth

contributions are either comparable or exceed the value of the seventh
correction.
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Comparison of the two considered methods

- ](\;iv P 128 4 0.207 + 0.195 + 0.268 + 0.475 +[0.965 + 1.965 | ,

=
-
=

Q

S 1.28 +0.207 4+ 0.195 4+ 0.268 + 0.475 + [ 1.070 + 3.170 | ,
1 GeV
4.18 +0.399 + 0.199 + 0.145 + 0.136 +|0.136 + 0.136 | ,
1 GeV
: S 4.18 +0.399 + 0.199 + 0.145 + 0.136 + | 0.177 + 0.284 | ,
1 GeV
1 Gev 163.5 + 7.543 + 1.612 + 0.499 + 0.197 +|0.074 + 0.025 | ,
e

163.5 4+ 7.543 + 1.612 4 0.499 + 0.197 +10.122 + 0.087
+ 10.073 +0.071 4+ 0.078 + 0.097 | .

=
&
&
A
(e

=
-
=

&2

=
=
23

IS
=
=

&
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Conclusion

@ We evaluate the two unknown in analytical form four-loop coefficients

27(730) and z,(:fl) and their uncertainties by the LSM in QCD and QED

Applying the ECH-motivated approach with arising mw2-effects from the
analytic continuation from the Euclidean to Minkowskian space we
obtain five and six-loop contributions to the QCD MS-on-shell relation.

@ We indicate that ECH-motivared method for bottom-quark pole mass
leads to the effect of a plateau, whereas for top-quark the five and
six-loop corrections are decreased.

@ In the framework of the renormalon-dominated hypothesis we estimate
O(a?) and O(a%)-contributions to the pole mass of ¢, b and t-quarks. The
results of this hypothesis show different behavior of these corrections for
b-quark and similar for t-quark.

@ The renormalon-based analysis is applied up to 10 order of PT and we
conclude that the asymptotic behavior for expansion of the pole mass of
top-quark through its running mass begins to manifest itself somewhere
at the 7 or 8 level of PT. Therefore the concept of pole mass of
top-quark can be safely considered in the phenomenology studies.
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Thank you for your attention!
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