Cosmological bounce in Horndeski theory and beyond.

based on arXiv:1705.06626

V. Volkova

INR RAS

Quarks-2018
We know quite a lot about the Universe and it's evolution from at least hundreds KeV (BBN) to 2.4K (today).
We know quite a lot about the Universe and its evolution from at least hundreds KeV (BBN) to 2.4K (today).

However, we believe there are preceding stages…
One of the most attractive and conventional options is inflation.
One of the most attractive and conventional options is *inflation*

Yet not fully justified...
Bouncing solution

An alternative is *bouncing solution*
Bouncing solution

An alternative is *bouncing solution*

But it requires Null Energy Condition violation...
Null Energy condition

\[T_{\mu\nu} k^\mu k^\nu > 0 \quad \longleftrightarrow \quad p + \rho > 0 \quad \longrightarrow \quad \text{NEC-violation:} \quad p + \rho \leq 0 \]

Friedmann equations

\[\dot{H} = -4\pi G (p + \rho) + \frac{\kappa}{a^2} \]
Null Energy condition

\[T_{\mu\nu} k^\mu k^\nu > 0 \quad \leftrightarrow \quad p + \rho > 0 \quad \rightarrow \quad \text{NEC-violation: } p + \rho \leq 0 \]

Friedmann equations

\[\dot{H} = -4\pi G (p + \rho) + \frac{k^2}{a^2} \]
Null Energy condition

\[T_{\mu\nu} k^\mu k^\nu > 0 \quad \leftrightarrow \quad p + \rho > 0 \quad \rightarrow \quad \text{NEC–violation: } p + \rho \leq 0 \]

Friedmann equations

\[\dot{H} = -4\pi G (p + \rho) \leq 0 \]

It is impossible to violate NEC with a conventional matter in a healthy way.
where π is the Galileon field, $X = g^{\mu\nu} \pi,_{\mu} \pi,_{\nu}$, $\pi,_{\mu} = \partial_{\mu} \pi$, $\pi;_{\mu\nu} = \nabla_{\nu} \nabla_{\mu} \pi$,
$\Box \pi = g^{\mu\nu} \nabla_{\nu} \nabla_{\mu} \pi$, $G_{4X} = \partial G_{4}/\partial X$
NEC-violation without pathologies (ghost or gradient instabilities)

T. Qiu, J. Evslin, Y. F. Cai, M. Li and X. Zhang, 1108.0593
D. A. Easson, I. Sawicki and A. Vikman, 1109.1047
M. Osipov and V. Rubakov, 1303.1221
T. Qiu, X. Gao and E. N. Saridakis, 1303.2372
NEC-violation without pathologies (ghost or gradient instabilities)

T. Qiu, J. Evslin, Y. F. Cai, M. Li and X. Zhang, 1108.0593
D. A. Easson, I. Sawicki and A. Vikman, 1109.1047
M. Osipov and V. Rubakov, 1303.1221
T. Qiu, X. Gao and E. N. Saridakis, 1303.2372

But situation is not so bright for complete cosmological models
If there are no pathologies during or near the NEC-violation phase, they will appear somewhere else:

Y. F. Cai, D. A. Easson and R. Brandenberger, 1206.2382
M. Koehn, J. L. Lehners and B. A. Ovrut, 1310.7577
L. Battarra, M. Koehn, J. L. Lehners and B. A. Ovrut, 1404.5067
T. Qiu and Y. T. Wang, 1501.03568
T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1504.05710
Y. Wan, T. Qiu, F. P. Huang, Y. F. Cai, H. Li and X. Zhang, 1509.08772
A. Ijjas and P. J. Steinhardt, 1606.08880
NEC-violation without pathologies (ghost or gradient instabilities)

T. Qiu, J. Evslin, Y. F. Cai, M. Li and X. Zhang, 1108.0593
D. A. Easson, I. Sawicki and A. Vikman, 1109.1047
M. Osipov and V. Rubakov, 1303.1221
T. Qiu, X. Gao and E. N. Saridakis, 1303.2372

But situation is not so bright for complete cosmological models
If there are no pathologies during or near the NEC-violation phase, they will appear somewhere else:

Y. F. Cai, D. A. Easson and R. Brandenberger, 1206.2382
M. Koehn, J. L. Lehners and B. A. Ovrut, 1310.7577
L. Battarra, M. Koehn, J. L. Lehners and B. A. Ovrut, 1404.5067
T. Qiu and Y. T. Wang, 1501.03568
T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1504.05710
Y. Wan, T. Qiu, F. P. Huang, Y. F. Cai, H. Li and X. Zhang, 1509.08772
A. Ijjas and P. J. Steinhardt, 1606.08880

Theorem: there is no healthy bounce in Horndeski theory

M. Libanov, S. M and V. Rubakov, 1605.05992
R. Kolevatov and S. M, 1607.04099
T. Kobayashi, 1606.05831
S. Akama and T. Kobayashi, 1701.02926
\[S = \int dt d^3x a^3 \left[\frac{G_T}{8} \left(h_{ik}^T \right)^2 - \frac{F_T}{8a^2} \left(\partial_i h_{kl}^T \right)^2 + G_S \xi^2 - \mathcal{F}_S \frac{(\nabla \zeta)^2}{a^2} \right] \]

where the coefficients are related:

\[G_S = \frac{\Sigma G_T^2}{\Theta^2} + 3G_T, \]
\[F_S = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_T, \]
\[\xi = \frac{aG_T^2}{\Theta}. \]

The speeds of sound for tensor and scalar perturbations are, respectively,

\[c_T^2 = \frac{\mathcal{F}_T}{G_T}, \quad c_S^2 = \frac{\mathcal{F}_S}{G_S} \]

A healthy and stable solution requires correct signs for kinetic and gradient terms as well as subluminal propagation:

\[G_T > \mathcal{F}_T > 0, \quad G_S > \mathcal{F}_S > 0 \]
No-go theorem in Horndeski theory

\[
\mathcal{F}_S = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_T \quad \rightarrow \quad \xi(t_2) - \xi(t_1) = \int_{t_1}^{t_2} a(t) (\mathcal{F}_T + \mathcal{F}_S) \, dt
\]

Suppose that \(\xi(t_2) > 0\). As we have

\[
\xi(t_1) = \xi(t_2) - \int_{t_1}^{t_2} a(t) (\mathcal{F}_T + \mathcal{F}_S) \, dt,
\]

taking a long enough period of time (for instance, \(t_1 \to -\infty\)) results in \(\xi(t_1) < 0\). Another possibility is that \(\xi(t_1) < 0\):

\[
\xi(t_2) = -|\xi(t_1)| + \int_{t_1}^{t_2} a(t) (\mathcal{F}_T + \mathcal{F}_S) \, dt,
\]

Then taking \(t_2 \to \infty\) gives \(\xi(t_2) > 0\).

Hence, there must be a moment of time when \(\xi(t)\) changes sign, i.e., it crosses zero, \(\xi(t_0) = 0\).
No-go theorem in Horndeski theory

The definition of ξ:

$$\xi = \frac{aG_T^2}{\Theta}.$$

Hence to make ξ cross zero it requires $\Theta \to \infty$ or $G_T \to 0$.

Neither of these requirements can be met:

- $G_T = 0$ corresponds to a strong coupling regime
- infinite Θ means a singularity in the Lagrangian
Beyond Horndeski

\[S = \int d^4x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_{B\mathcal{H}} \right), \]

\[\mathcal{L}_2 = F(\pi, X), \]

\[\mathcal{L}_3 = K(\pi, X) \Box \pi, \]

\[\mathcal{L}_4 = -G_4(\pi, X) R + 2G_4X(\pi, X) \left[(\Box \pi)^2 - \pi;\mu\nu \pi^{;\mu\nu} \right], \]

\[\mathcal{L}_5 = G_5(\pi, X) G^{\mu\nu} \pi;\mu\nu + \frac{1}{3} G_{5X} \left[(\Box \pi)^3 - 3\Box \pi \pi;\mu\nu \pi^{;\mu\nu} + 2\pi;\mu\nu \pi^{;\mu\rho} \pi^{;\rho} \right], \]

\[\mathcal{L}_{B\mathcal{H}} = F_4(\pi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi,\mu \pi,\mu' \pi^{;\nu\nu'} \pi^{;\rho\rho'} + \]

\[+ F_5(\pi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi,\mu \pi,\mu' \pi^{;\nu\nu'} \pi^{;\rho\rho'} \pi^{;\sigma\sigma'} \]
\[S = \int dtd^3x a^3 \left[\frac{\hat{G}_T}{8} (\dot{h}_{ik})^2 - \frac{\mathcal{F}_T}{8a^2} (\partial_i h_{kl})^2 + G_S \dot{\zeta}^2 - \mathcal{F}_S \frac{(\nabla \zeta)^2}{a^2} \right] \]

where the modified coefficients are

\[
G_S = \frac{\Sigma G_T^2}{\Theta^2} + 3G_T, \quad G_S = \frac{\Sigma \hat{G}_T^2}{\Theta^2} + 3\hat{G}_T, \\
F_S = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_T, \quad \rightarrow \quad F_S = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_T, \\
\xi = \frac{aG_T^2}{\Theta}, \quad \xi = \frac{aG_T \hat{G}_T}{\Theta} = \frac{aG_T (G_T + D\dot{\pi})}{\Theta}.
\]

The speeds of sound for tensor and scalar perturbations are, again, respectively,

\[
c_T^2 = \frac{\mathcal{F}_T}{\hat{G}_T}, \quad c_S^2 = \frac{\mathcal{F}_S}{G_S}
\]

Again, we require correct signs for kinetic and gradient terms as well as subluminal propagation:

\[
\hat{G}_T > \mathcal{F}_T > 0, \quad G_S > \mathcal{F}_S > 0
\]
Bouncing solution: an example
Bouncing solution: an example

\[V. \text{ Volkova (INR RAS)} \]

Cosmological bounce in Horndeski theory and beyond.
Bouncing solution: an example

\[F_S \]

\[F_T \]

\[c_S \]

\[c_T \]
Is it possible for Θ to safely have zero value?

$$S = \int \! dt d^3x a^3 \left[\frac{\hat{G}_T}{8} \left(\dot{h}_{ik} \right)^2 - \frac{\mathcal{F}_T}{8a^2} (\partial_i h_{kl})^2 + G_S \dot{\zeta}^2 - \mathcal{F}_S \frac{(\nabla \zeta)^2}{a^2} \right]$$

$$G_S = \frac{\Sigma \hat{G}_T^2}{\Theta^2} + 3\hat{G}_T,$$

$$\mathcal{F}_S = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_T,$$

$$\xi = \frac{aG_T \hat{G}_T}{\Theta} = \frac{a \left(\hat{G}_T - D \ddot{\pi} \right) \hat{G}_T}{\Theta}.$$

At least naively, it seems that $\Theta = 0$ forces one to fine tune \hat{G}_T and G_T to have regular G_S and \mathcal{F}_S.
If $\Theta \neq 0$ at all times, it is impossible to have Einstein gravity + massless scalar field \textit{both} in distant past and future.

$$\Theta = -K X \ddot{\pi} + 2 G_4 H - 8 H G_4 X X - 8 H G_4 X X^2 + G_4 - \ddot{\pi} + 2 G_4 X X^\prime \ddot{\pi} - 5 H^2 G_5 X \ddot{\pi} - 2 H^2 G_5 X X^2 \ddot{\pi} + 3 H G_5 X + 2 H G_5 X X^2 + 10 H F_4 X^2 + 4 H F_4 X X^3 + 21 H^2 F_5 X X^2 \ddot{\pi} + 6 H^2 F_5 X X^3 \ddot{\pi}$$
Let us consider $\Theta = 0$:

$$ S = \int dt d^3 x a^3 \left[G_S \dot{\zeta}^2 - F_S \frac{(\nabla \zeta)^2}{a^2} \right] $$

$$ G_S = \frac{\Sigma \hat{G}^2_T}{\Theta^2} + 3\hat{G}_T, $$

$$ F_S = \frac{1}{a} \frac{d}{dt} \left(\frac{aG_T \hat{G}_T}{\Theta} \right) - F_T. $$
Let us consider $\Theta = 0$:

$$S = \int dt d^3x a^3 \left[G_S \dot{\zeta}^2 - F_S \frac{(\nabla \zeta)^2}{a^2} \right]$$

$$G_S = \frac{\Sigma \hat{G}_T^2}{\Theta^2} + 3 \hat{G}_T,$$

$$F_S = \frac{1}{a} \frac{d}{dt} \left(\frac{a G_T \hat{G}_T}{\Theta} \right) - F_T.$$

Despite the seeming singularities in the action and linearized equation, the solution $\zeta(t)$ is regular at any moment of time.
Let us consider $\Theta = 0$:

$$S = \int dtd^3xa^3 \left[G_S \dot{\zeta}^2 - F_S \frac{(\nabla \zeta)^2}{a^2} \right]$$

$$G_S = \frac{\Sigma \hat{G}_T^2}{\Theta^2} + 3\hat{G}_T,$$

$$F_S = \frac{1}{a} \frac{d}{dt} \left(aG_T \hat{G}_T \frac{1}{\Theta} \right) - F_T.$$

Despite the seeming singularities in the action and linearized equation, the solution $\zeta(t)$ is regular at any moment of time.

This fact agrees with the recent discussion raised by Anna Ijjas (arXiv:1710.05990).
Conclusion

1. In Horndeski there are no bouncing solution stable at all times.

2. There is a completely healthy bounce in beyond Horndeski theory.

3. It is possible to construct a bouncing solution with conventional Einstein gravity in both distant past and future.
Thank you for your attention!