Dualities in dense baryonic (quark) matter with chiral and isospin imbalance

R.N. Zhokhov,
in collaboration with
T.G. Khunjua and K.G. Klimenko

IHEP, IZMIRAN

QUARKS-2018, Valdai

May 28, 2018
Hadronic, quark matter
Methods of dealing with QCD

- First principle calculation – lattice Monte Carlo simulations, LQCD

- Effective models
 - Nambu–Jona-Lasinio model NJL

- Low dimensional models that mimics QCD,
 - (1+1)- dim GN, NJL₂
Lattice QCD
non-zero baryon chemical potential μ_B

sign problem — complex determinant

$$(\text{Det}(D(\mu)))^\dagger = \text{Det}(D(-\mu^\dagger))$$
(1+1)-dimensional GN, NJL model

(1+1)-dimensional Gross-Neveu (GN) or NJL model possesses a lot of common features with QCD

- renormalizability
- asymptotic freedom
- spontaneous chiral symmetry breaking in vacuum
- dimensional transmutation
- have the similar $\mu_B - T$ phase diagrams

NJL$_2$ model
laboratory for the qualitative simulation of specific properties of QCD at arbitrary energies
(3+1)-dimensional NJL model

NJL model can be considered as effective field theory for QCD.

the model is nonrenormalizable
Valid up to $E < \Lambda \approx 1$ GeV

Parameters G, Λ, m_0

chiral limit $m_0 = 0$

in many cases chiral limit is a very good approximation

dof—**quarks**
no gluons only **four-fermion interaction**
attractive feature — dynamical CSB
the main drawback – lack of confinement (PNJL)

Relative simplicity allow to consider hot and dense QCD in the framework of NJL model and explore the QCD phase structure (diagram).
Unlike the QED, the QCD vacuum has non-trivial structure due to non-perturbative interactions among quarks and gluons.

GOR relation and lattice simulations ⇒ condensation of quark and anti-quark pairs

\[\langle \bar{q}q \rangle \neq 0, \quad \langle \bar{u}u \rangle = \langle \bar{d}d \rangle \approx (-250\text{MeV})^3 \]
Nambu–Jona-Lasinio model

\[\mathcal{L} = \bar{q} \gamma^\nu i \partial_\nu q + \frac{G}{N_c} \left[(\bar{q}q)^2 + (\bar{q} i \gamma^5 q)^2 \right] \]

\[q \rightarrow e^{i \gamma^5 \alpha} q \]

Continuous symmetry

\[\tilde{\mathcal{L}} = \bar{q} \left[\gamma^\rho i \partial_\rho - \sigma - i \gamma^5 \pi \right] q - \frac{N_c}{4G} \left[\sigma^2 + \pi^2 \right]. \]

Chiral symmetry breaking

1/N_c expansion, leading order

\[\langle \bar{q}q \rangle \neq 0 \]

\[\langle \sigma \rangle \neq 0 \quad \rightarrow \quad \tilde{\mathcal{L}} = \bar{q} \left[\gamma^\rho i \partial_\rho - \langle \sigma \rangle \right] q \]
QCD at finite temperature and nonzero chemical potential plays a fundamental role in many different physical systems. (QCD at extreme conditions)

- neutron stars
- heavy ion collision experiments
- Early Universe
Very brief history and motivation

There has been a lot of activity in this area pion condensation in NJL$_4$
also in (1+1)- dimensional case, NJL$_2$

\[\downarrow \]

pion condensation in dense matter predicted without certainty

physical quark mass – no pion condensation in dense medium
H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, M. Ruggieri
Very brief history and motivation

There could be parameters that generate pion condensation in dense matter

-Finite volume effects
D. Ebert, T.G. Khunjua, K.G. Klimenko, V.Ch. Zhukovsky,

-Inhomogeneous pion condensate
N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, V. Ch. Zhukovsky,

This is all obtained in (1+1)- dimensional case, NJL$_2$

-Pion Condensation by Rotation in a Magnetic field
Different types of chemical potentials: dense matter with isotopic imbalance

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

The corresponding term in the Lagrangian is

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q,$$

where μ -quark chemical potential

Isotopic chemical potential μ_I

Allow to consider systems with isotopic imbalance.

$$n_I = n_u - n_d \leftrightarrow \mu_I = \mu_u - \mu_d$$

The corresponding term in the Lagrangian is $\frac{\mu}{2}\bar{q}\gamma^0\tau_3 q$
QCD phase diagram with isotopic imbalance

neutron stars, heavy ion collisions have isotopic imbalance
Different types of chemical potentials: chiral imbalance

chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between between densities of left-handed and right-handed quarks).

\[n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L \]

The corresponding term in the Lagrangian is

\[\mu_5 \bar{q} \gamma^0 \gamma^5 q \]
Different types of chemical potentials: chiral imbalance

chiral (axial) isotopic chemical potential

Allow to consider systems with chiral isospin imbalance

\[\mu_{I5} = \mu_{u5} - \mu_{d5} \]

so the corresponding density is

\[n_{I5} = n_{u5} - n_{d5} \]

\[n_{I5} \longleftrightarrow \mu_{I5} \]

Term in the Lagrangian — \[\frac{\mu_{I5}}{2} \bar{q} \gamma^0 \gamma^5 q \]

If one has all four chemical potential, one can consider different densities \(n_{uL}, n_{dL}, n_{uR} \) and \(n_{dR} \)
Chiral magnetic effect

\[\vec{J} = c \mu_5 \vec{B}, \quad c = \frac{e^2}{2\pi^2} \]

A. Vilenkin, PhysRevD.22.3080,
Chiral separation effect

Chiral imbalance could appear in compact stars

\[\vec{J}_5 = c \mu \vec{B}, \quad c = \frac{e^2}{2\pi^2} \]

there is current and there is \(n_5 \)
We consider a NJL model, which describes dense quark matter with two massless quark flavors (u and d quarks).

$$\mathcal{L} = \bar{q} \left[\gamma^\nu i \partial_\nu + \frac{\mu B}{3} \gamma^0 + \frac{\mu I}{2} \tau_3 \gamma^0 + \frac{\mu I^5}{2} \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 \right] q + \frac{G}{N_c} \left[(\bar{q} q)^2 + (\bar{q}i \gamma^5 \tau q)^2 \right]$$

q is the flavor doublet, $q = (q_u, q_d)^T$, where q_u and q_d are four-component Dirac spinors as well as color N_c-plets; τ_k ($k = 1, 2, 3$) are Pauli matrices.
quark masses, chiral limit

light quarks u, d

$$m_u = 0.005 \text{ GeV}, \quad m_d = 0.009 \text{ GeV}$$

chiral limit $m_u = m_d = 0$
Equivalent Lagrangian

To find the thermodynamic potential we use a semi-bosonized version of the Lagrangian

$$\tilde{L} = \bar{q} \left[\gamma^\rho i \partial_\rho + \mu \gamma^0 + \nu \tau_3 \gamma^0 + \nu_5 \tau_3 \gamma^1 - \sigma - i \gamma^5 \pi_a \tau_a \right] q - \frac{N_c}{4G} \left[\sigma \sigma + \pi_a \pi_a \right].$$

$$\sigma(x) = -2 \frac{G}{N_c} (\bar{q}q); \quad \pi_a(x) = -2 \frac{G}{N_c} (\bar{q}i \gamma^5 \tau_a q).$$

Condensates ansatz $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates x,

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \Delta, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0. \quad (1)$$

where M and Δ are already constant quantities.
thermodynamic potential

the thermodynamic potential can be obtained in the large N_c limit

$$\Omega(M, \Delta)$$

Projections of the TDP on the M and Δ axes

No mixed phase ($M \neq 0, \Delta \neq 0$)

it is enough to study the projections of the TDP on the M and Δ

projection of the TDP on the M axis $F_1(M) \equiv \Omega(M, \Delta = 0)$

projection of the TDP on the Δ axis $F_2(\Delta) \equiv \Omega(M = 0, \Delta)$
Dualities of the TDP

The TDP is invariant with respect to the so-called duality transformations (dualities)

1) The main duality

\[D : M \leftrightarrow \Delta, \quad \nu \leftrightarrow \nu_5 \]

\[\nu \leftrightarrow \nu_5 \text{ and PC } \leftrightarrow \text{ CSB} \]

2) Duality in the CSB phenomenon

\[F_1(M) \text{ is invariant under } D_M : \nu_5 \leftrightarrow \mu_5 \]

3) Duality in the PC phenomenon

\[F_2(\Delta) \text{ is invariant under } D_\Delta : \nu \leftrightarrow \mu_5 \]

PC phenomenon breaks \(D_M \) and CSB phenomenon \(D_\Delta \) duality
Dualities in different approaches

- Similar dualities between chiral and superconducting condensates have been obtained in (1+1) and (2+1)-dimensional models

 D. Ebert, T.G. Khunjua, K.G. Klimenko, V.Ch. Zhukovsky,
 Phys. Rev. D 90, 045021 (2014),

- Large N_c orbifold equivalences connect gauge theories with different gauge groups and matter content in the large N_c limit.

 M. Hanada and N. Yamamoto,
Phase structure of the (1+1) dim NJL model

Chiral isospin chemical potential μ_{I_5} generates charged pion condensation in the dense quark matter.

Phase portrait \((\mu, \nu, \nu_5)\) of NJL\(_2\)

Figure: \((\mu, \nu, \nu_5)\) phase diagram in homogeneous case.
Phase structure of (3+1)-dim NJL model

Phase structure of the (3+1) dim NJL model

Chiral isospin chemical potential μ_5 generates charged pion condensation in the dense quark matter.
ν, ν_5) phase portrait of NJL$_4$

Duality between chiral symmetry breaking and pion condensation

$\mathcal{D}: \ M \longleftrightarrow \Delta, \ \nu \longleftrightarrow \nu_5$

$\text{PC} \longleftrightarrow \text{CSB} \ \nu \longleftrightarrow \nu_5$

Figure: (ν, ν_5) at $\mu = 0$ GeV

Figure: (ν, ν_5) at $\mu = 0.195$ GeV
Comparison of phase diagram of (3+1)-dim and (1+1)-dim NJL models

The phase diagrams obtained in two models that are assumed to describe QCD phase diagram are qualitatively the same.
\((\mu, \nu)\) phase portraits comparison, NJL\(_2\) and NJL\(_4\)
\((\mu, \nu)\) phase portraits comparison, NJL\(_2\) and NJL\(_4\)

Figure: \((\mu, \nu)\) phase diagram in the framework of NJL\(_2\) model at \(\nu_5 = 0\) GeV

Figure: \((\mu, \nu)\) phase diagram in the framework of NJL\(_4\) model at \(\nu_5 = 0.15\) GeV
comparison of NJL$_2$ and NJL$_4$, slight difference and complementarity

slight difference:
NJL$_2$: ν_5 can generate PC$_d$ phase even at $\nu = 0$
NJL$_4$: ν_5 can generate PC$_d$ phase only at $\nu \neq 0$
NJL$_4$ is more realistic so $\nu_5 \rightarrow$ PC$_d$ only at $\nu \neq 0$

Complementarity
NJL$_2$ is renormalizable, ν_5, ν etc can have any value
NJL$_4$ is non-renormalizable, effective, ν_5, $\nu < \Lambda \approx 650$ GeV
But if the predictions are the same one can possibly expand the prediction of NJL$_4$ model to the range where its results are not credible.
Consideration of the case with μ_B, μ_I, μ_{I5} and μ_5 chemical potentials in (3+1)-dimensional NJL model

$$(\mu_B, \mu_I, \mu_{I5}, \mu_5),$$
$$(\nu_5 = \frac{\mu_{I5}}{2}, \nu = \frac{\mu_I}{2})$$

Up to now (μ_B, μ_I, μ_{I5}) was considered ($\mu_{I5} \neq 0$ and $\mu_5 = 0$)

Now let us consider μ_5 instead of μ_{I5} ($\mu_5 \neq 0$, $\mu_{I5} = 0$)

$$(\mu_B, \mu_I, \mu_{I5}) \longrightarrow (\mu_B, \mu_I, \mu_5)$$

How chiral imbalance in the form of chiral μ_5 chemical potential influence PC condensation
Chiral imbalance in the form of μ_5 chemical potential. (ν, μ_5) phase diagram

Chiral chemical potential μ_5 generates charged pion condensation in the dense quark matter as well.

$\mu_5 \rightarrow \text{PC}_d$

-Not so prominently as μ_I does
-But only at comparatively low densities n_q

Figure: (ν, μ_5) phase diagram at $\mu = 0.23$ GeV.
Figure: (ν, μ_5) phase diagram at $\mu = 0.1$ GeV.

Figure: (ν, μ_5) phase diagram at $\mu = 0.23$ GeV.
Comparison of non-zero $\nu_5 = \mu_{15}/2$ and μ_5 cases, duality in the PC phenomenon

Duality in the PC phenomenon

PC phenomenon ($F_2(\Delta)$) is invariant under D_Δ

$$D_\Delta : \nu \leftrightarrow \mu_5$$

But CSB does not respect the duality D_Δ so one has to check that CSB is dynamically suppressed in the duality conjugated regions

CSB is dynamically suppressed $M_0 = 0$
Comparison of non-zero $\nu_5 = \mu_5/2$ and μ_5 cases. Duality in the PC

Figure: (ν, ν_5) phase diagram at $\mu = 0.55$.

Figure: (ν, μ_5) phase diagram at $\mu = 0.4$ GeV.
\((\nu, \mu_5)\) phase diagram, duality in the PC phenomenon

If CSB is dynamically suppressed throughout all phase diagram \((\nu, \mu_5)\) then the phase diagram \((\nu, \mu_5)\) is self dual with respect to \(\nu \leftrightarrow \mu_5\).

Figure: \((\nu, \mu_5)\) phase diagram at
\(\mu = 0(0.01)\) GeV.
Consideration of the case $\mu_1 = 0$

Now let us discuss the case of $\mu_1 = 0$

and investigate the influence of μ_{15} and μ_5

Study the influence of μ, μ_{15} and μ_5 on the phase diagram
and present the (μ, μ_{15}, μ_5)-phase diagram of the model

do not have to calculate anything
one can use duality \mathcal{D} between CSB and PC to get phase diagrams from already depicted ones
(μ_5, ν_5) phase diagram, duality in the CSB phenomenon

Figure: (μ_5, ν_5) phase diagram at $\mu = 0(0.01)$ GeV.

Duality in the CSB phenomenon

CSB phenomenon ($F_1(M)$) is invariant under D_M

$$D_M : \nu_5 \leftrightarrow \mu_5$$

But PC does not respect the duality D_M so one has to check if CSB is dynamically suppressed

$$M_0 = 0$$

Catalysis of Dynamical CSB by μ_5 Braguta, Kotov Phys. Rev. D 93, 105025 (2016)
Comparison of ν and μ_5

Figure: (ν, ν_5) phase diagram at $\mu = 0.55$ GeV.

Figure: (μ_5, ν_5) phase diagram at $\mu = 0.4$ GeV.
Comparison of impact of ν and μ_5 on PC phenomenon

It was said above that in more realistic NJL$_4$ model PC$_d$ phase can be generated by ν_5 only in isospin asymmetric matter $\nu \neq 0$, but one knows that ν and μ_5 influence the PC phenomenon exactly the same way and one can guess that PC$_d$ phase can be generated just by ν_5 and μ_5 at $\nu = 0$

NJL$_4$: $\nu_5 \rightarrow$ PC$_d$ only at $\nu \neq 0$

in terms of PC$_d$ the $\nu = \mu_5$

$\nu_5 \rightarrow$ PC$_d$ at $\nu = 0$ and $\mu_5 \neq 0$

Just Chiral imbalance but in both forms generate PC$_d$ phase
Consideration of the general case μ, μ_1, μ_{15} and μ_5

Now let us discuss the general case μ, μ_1, μ_{15} and μ_5
Consideration of the general case μ, μ_1, μ_{15} and μ_5

In this case the phase diagram even richer

generation of PC_d phase is even more widespread

Figure: (ν, ν_5) phase diagram at $\mu_5 = 0.5$ GeV and $\mu = 0.3$ GeV.
Charge neutrality condition

the general case \((\mu, \mu_1, \mu_{15}, \mu_5)\)

consider charge neutrality case \(\rightarrow \nu = \mu_1/2 = \nu(\mu, \nu_5, \mu_5)\)
Charge neutrality condition

-pion condensation in dense matter predicted without certainty,
 at ν there is a small region of PC_d phase

-physical quark mass and electric neutrality - no pion condensation in dense medium
 H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, M. Ruggieri

-Chiral isospin chemical potential μ_{I5} generates PC_d

-can this generation happen in the case of neutrality condition
Charge neutrality condition, just ν_5

Figure: (ν, ν_5) phase diagram at $\mu = 0.4$ GeV and $\mu_5 = 0$.

\[n_Q = 0 \]
Charge neutrality condition, both ν_5, μ_5

Figure: (ν, ν_5) phase diagram at $\mu = 0.4$ GeV and $\mu_5 = 0.4$.
Conclusions

\[\mu_B \neq 0 \text{ - dense quark matter} \]
\[\mu_I \neq 0 \text{ isotopically asymmetric} \]
\[\mu_5 \neq 0 \text{ and } \mu_{15} \neq 0 \text{ chirally asymmetric} \]

CSB and PC

First NJL$_2$: \[\mu_{15} \rightarrow \text{PC}_d \quad (\mu_B, \mu_I, \mu_{15}) \]
Duality between CSB and PC: \[\nu_5 \leftrightarrow \nu \]

NJL$_4$: \[\mu_{15} \rightarrow \text{PC}_d \quad \text{qualitatively the same picture} \quad (\mu_B, \mu_I, \mu_{15}) \]
Duality between CSB and PC is checked

NJL$_2$ approach is justified
Then $\mu_{I5} \rightarrow \mu_5$: $\mu_5 \rightarrow \text{PC}_d$ but not as widely as μ_{I5}

(μ_B, μ_I, μ_5)

Both μ_{I5}, μ_5: \textbf{wide PC}_d \textbf{ generation even with neutrality condition}

$(\mu_B, \mu_I, \mu_{I5}, \mu_5)$

Found new dualities \mathcal{D}_M and \mathcal{D}_Δ

isotopic and chiral imbalance and baryon density

HIC and NS and early universe
Thanks for the attention

You could wonder what changes will bring finite temperature T and non-zero current quark masses m_0, can all this be compared with results of Lattice QCD

next talk by Tamaz Khunjua