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Introduction
More than forty years ago Hawking (1974) and Unruh (1976) discovered theoretically the

radiation arising at change of vacuum under the influence of real or apparent gravitation field
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These effects are very subtle: 

•for the Black Hole of solar mass the temperature is about 6 ⋅10-8 K

•for the acceleration of 1g the temperature is about 4⋅10-19 K
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These effects are very subtle: 

•for the Black Hole of solar mass the temperature is about 6 ⋅10-8 K

•for the acceleration of 1g the temperature is about 4⋅10-19 K

Despite the presence of preferred direction, a, 

these effects are believed to be isotropic!



Previous investigations of anisotropy of the Unruh radiation

• Gerlach, Phys. Rev. D, 27, 2310 (1983)

• Grove and Ottewill, Class. and Quant. Grav., 2, 373, (1985)

• Hinton et al., Physics Letters B, 120, 88 (1983)

• Israel and Nester, Physics Letters A, 98, 329 (1983)

• Sanchez, Physics Letters A, 112, 133 (1985)

Kolbenstvedt [Physics Letters A, 122, 292 (1987); Phys. Rev. D, 38, 1118 (1988)] is cautious

in conclusions and points to the possible dependence of final distribution of observed Unruh

radiation on detector model (in particular, notable size of detector).

Distribution of the Unruh

radiation is totally isotropic

Distribution of the Unruh radiation

is anisotropic in the following sense: 

detector response is anisotropic due 

to aberration effect

• It seems that full consensus on isotropy/anisotropy of the Unruh radiation 

has not achieved. 

• Commonly accepted point of view: the Unruh radiation is isotropic.

It seems that more fundamental reasons than considered in previous papers should 

exist and distribution of the Unruh radiation should be anisotropic independently 

of detector model. 



Origin of Doubts: the close-allied effects
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The Schwinger effect: 

Electron-positron pair production by electric 
field; analogy of Hawking radiation in some
sense

The Doppler effect: 

Change of quantum frequency due to 
observer motion; in tight connection
with the Unruh effect
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Both these effects are significantly anisotropic!

e.g. Grib et al. 1994; Popov et al. 2016



Rindler space-time

ρ is the Rindler coordinate, τ is the Rindler time

Rindler coordinates are related with the coordinates (t,x) in parent Minkowski

space-time by the following transforms:

The inverse transforms are:

The object with acceleration, a, has constant position ρ0=c2/a in Rindler space



Massless scalar field in (1+1)D Rindler and Minkowski space-times

The eigen-modes Ψκ
R and Ψk

M are different!
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The KFG equations in Minkowski and Rindler space-times

Rindler
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The eigen-modes Ψκ
R and Ψk

M are different!

“Running plane” waves in Rindler space-time

Running plane waves in Minkowski space-time
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The Bogolyubov transformations

The KFG product [in Rindler space-time]



The numbers of particles
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The base of the Unruh effect



The key relations
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The Unruh result for scalar field
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It does not depend on quantum propagation direction, i.e. on sign of κ
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The region of essential contribution to the integral is the vicinity of point where q=κ



Thus, there is significant asymmetry between positive and negative quantum propagation 
directions:

• in the behaviour of wave-functions in the vicinity of observer position ρ0

• in the behaviour of region of main contribution relative to the Rindler coordinate ρ

Obs. Pos. Obs. Pos.
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Let us consider the body accelerated with 1g (9.8 m⋅s-2) during 20 years of proper 

time. Size of Rindler horizon ρ0 is about 1 l.y. The main contribution to the spectrum 

is expected at wavelengths about ρ0. After 20 years of acceleration on proper time 

(that corresponds to about 2.4⋅108 years in parent Minkowski space), one will have 

the following picture:

1)  For quanta with k>0
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That corresponds to the region of essential contribution to the integral in parent 

Minkowski space

This is about 107 times larger than the size of observed Universe!
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That corresponds to the region of essential contribution to the integral in parent 

Minkowski space

This is also far from the accelerated body (~2.4⋅108 l.y. in parent 

Minkowski space), but this region remains within observable part of 

the Universe at least.



The doubts presented here partially reflect the following doubts

stated by Fulling (1973): ``The quantum theory usually deals with

phenomena that happen on a microscopic scale. It is hard to

understand how the global structure of the Universe can affect the

physics inside a small Cauchy-complete region.''



The doubts presented here partially reflect the following doubts

stated by Fulling (1973): ``The quantum theory usually deals with

phenomena that happen on a microscopic scale. It is hard to

understand how the global structure of the Universe can affect the

physics inside a small Cauchy-complete region. Nevertheless, a 

decomposition of a field into modes appears unavoidably to involve

global integral transformations.''



The role of observer and origin of integration limit
Usually the Rindler metric is introduced in whole space immediately.
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Effect becomes especially markable in case of very long bar L>>c2/a

“Reference” observer “generates” the specific Rindler space-time
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Is that correct?

Bar “M” is at rest

x
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Bar “R” accelerates during long timebody reference  theofon accelarati  theis a
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ρ
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Bar “R” accelerates during time <L/cbody reference  theofon accelarati  theis a
r

xρ
L0

Effect becomes especially markable in case of very long bar L>>c2/a

Thus, to estimate the Unruh effect correctly, one should resolve not only the KFG 

equation for field Ψ but system of equations for field Ψ and metric gik even in the 

case of apparent gravitational field. It may be a difficult problem in general case, 

but in present case the qualitative answer seems clear.

“Reference” observer “generates” the specific Rindler space-time



Draft of correct calculation procedure and Result
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Conclusion

The Unruh effect should be significantly anisotropic. And this property

does not connect with the detector conception but is fundamental like the

Unruh effect itself.
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Conclusion

The Unruh effect should be significantly anisotropic. And this property

does not connect with the detector conception but is fundamental like the

Unruh effect itself.

Generalization of obtained result on case of massless and massive scalar

particles in (3+1)D spacetime is possible and will be performed soon.

Thank you for your attention!



The key relations

For example, observer position is not involved in above expressions directly
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The reason of isotropy is the invariance of integral relative to the scaling ρ→bρ’, 

τ’ →τ-(c/a)lnb due to the absence of any preferred reference point


