XXth International Seminar on High Energy Physics "Quarks-2018" Valday, Russia May 27 – June 2, 2017

KM3NeT: neutrino oscillation and astroparticle research in the Mediterranean sea

Dmitry Zaborov (CPPM / Aix-Marseille Univ., Marseille, France) on behalf the KM3NeT collaboration

Contents

- 1) Introduction to KM3NeT
 - 2) KM3NeT / ORCA
 - 3) Current status
- 4) Potential of a neutrino beam from Protvino to ORCA

Neutrino telescopes around the world

Neutrino detection principle

Sea water

target material for v interactions

+

Cherenkov radiator

Mediterranean deep-sea water
Light absorption length: ≈ 60 m
Light scattering length: ~ 260 m
[Astropart. Phys. 23 (2005) 131-155]

ANTARES

875 optical modules on 12 strings Completed in 2008 Operating for **10 yr** now

Dark matter limits, Phys.Let.B, 759 (2016) 69

All-flavour neutrino search, Phys. Rev. D 96, 082001 (2017)

GW 171807 (NS-NS merger)

May 28, 2018... and many other results

KM3NeT sites and participating countries

A distributed research infrastructure at two sites

Territorial waters

2450 m

MEUST

ORCA

Oscillation Research with Cosmics In the Abyss

Astroparticle Research with Cosmics In the Abyss

* KM3NeT = **km**³ **N**eutrino **T**elescope

Single Collaboration, Single Technology

From ANTARES to KM3NeT: Optical Module

ANTARES
Optical Module (OM)

- 10" PMT
- HV base
- LED

KM3NeT Digital Optical Module (DOM)

- 31 x 3" PMTs
- PMT HV
- LED & piezo
- FPGA readout
- White Rabbit
- DWDM

photocathode area similar to a 17" PMT

- Uniform angular coverage
- Directional information
- Digital photon counting
- ✔ All data to shore

From ANTARES to KM3NeT: detector storey

ANTARES storey

KM3NeT storey

3 OMs

electronics container (Ti)

frame (Ti)

Sensitivity ~ 2x - 3x ANTARES OM

Compact structure minimizes bioluminescence (stimulated by drag)

From ANTARES to KM3NeT: detector string

ANTARES string

KM3NeT Detection Unit (DU, string)

From ANTARES to KM3NeT: deployment method

ANTARES

KM3NeT

Watch https://www.youtube.com/watch?v=tR8jwgG6uzk

- Rapid deployment
- Autonomous unfurling
- Multiple DUs can be deployed in one sea operation

KM3NeT - ORCA

Digital Optical Module

Key mission: determine neutrino mass hierarchy

Optical background (mainly ⁴⁰K): 10 kHz/PMT

KM3NeT - ARCA

Volume: 1 Gt

2 x 115 strings 18 DOMs / string 31 PMTs / DOM

Total: 128 000 PMTs (3")

Vertical spacing: 36 m Horizontal spacing: 90 m

Mission: neutrino astronomy

Angular resolution ~ 0.2 deg (tracks, E > 10 TeV)

Energy resolution up to 5% (cascades)

Sensitivity similar to IceCube, but covering both sky hemispheres

Instrumented volume

Smaller but denser instruments are best for low energies (low amount of light)

Larger but sparser instruments are best for high energies (low fluxes)

41 m **↓** ■

MeV - GeV

Solar & atm. v

operating for 20 yr

KM3NeT-**ORCA**2000 OMs
8 Mt

E > 3 GeV

atm. ν

under construction

ANTARES 885 PMTs 20 Mt

E > 20 GeV

astrophysical and atm. v

operating for 10 yr

KM3NeT-**ARCA** 4000 OMs (128 000 PMTs) 1 Gt 1000 m E > 100 GeV astrophysical v under construction

IceCube & Baikal-GVD

have similar size

D. Zaborov - KM3NeT

May 28, 2018

1) Introduction to KM3NeT

2) KM3NeT / ORCA

3) Current status

4) Potential of a neutrino beam from Protvino to ORCA

Neutrino mass hierarchy (ordering)

inverted hierarchy (IH)

 Δm^2_{solar} : sign known

 $\Delta m^2_{\text{ atmosphric}}$: sign unknown

Important for theory, 0νββ, ...

Mass hierarchy with atmospheric neutrino

- Known composition (νe, νμ)
- Wide range of baselines (50 -12800 km) and energies (GeV - PeV)
- Oscillation affected by matter (mass hierarchy-dependent): maximum difference IH / NH at θ =130° (7645 km) and Ev = 7 GeV
- Opposite effect on antineutrinos: IH (ν) ≈ NH(anti-ν) but differences in flux and cross-section:

$$Φatm(ν) ≈ 1.3 x Φatm(anti-ν)$$
 $σ(ν) ≈ 2σ(anti-ν) at low$
energies

ORCA effective mass

After triggering, atmospheric muon rejection and containment cuts

Events/yr:

v_ຼ CC: 17,300

v_{..} CC: 24,800

v_CC:3,100

NC: 5,300

- Energy threshold determined by DOM spacing
- 1 Mton @ 3 GeV
- 6 Mton @ 10 GeV

Particle ID

Particle ID performance

At 10 GeV:

- 90% correct ID of v_e^{CC}
- 70% correct ID of $\nu_{\mu}^{\ \ CC}$

Zenith angle resolution

~ 5° error on zenith for 10 GeV neutrinos for both track and shower channels Limited by interaction kinematics (neutrino – lepton angle)

Energy resolution

Energy resolution better than 30% in relevant range

Distribution close to Gaussian

Sensitivity to Mass Ordering

Systematics	parameter	true value distr.	initial value distr.	
	overall flux factor	1	$\mu = 1$, $\sigma = 0.1$	
	NC scaling	1	$\mu=$ 1, $\sigma=$ 0.05	
	$ u/ar{ u}$ skew	0	$\mu = 0$, $\sigma = 0.03$	
	μ/e skew	0	$\mu = 0$, $\sigma = 0.05$	
	enerav slope	0	$\mu = 0. \ \sigma = 0.05$	

Worst case: 3 sigma in 4 years

treatment

fitted

fitted

fitted

fitted

fitted

prior

yes

yes

yes

yes

yes

Best case: > 5 sigma in 3 years (NH & upper octant of θ_{23})

Recent T2K result on θ_{23} : $\sin^2 \theta_{23} = 0.55^{+0.05}_{-0.09} \; (0.55^{+0.05}_{-0.08})$ (arXiv:1707.01048)

May 28, 2018

D. Zaborov - KM3NeT

22

Other ORCA science topics

- Precision measurement of neutrino mixing parameters (2% on Δm_{23}^2 and 4-10% on $\sin^2\theta_{23}$)
- Sterile neutrino & non-standard interactions
- Earth tomography and composition
- Supernova monitoring
- Indirect search for Dark Matter
- Low energy (GeV-TeV) neutrino astrophysics

- 1) Introduction to KM3NeT
 - 2) KM3NeT / ORCA
 - 3) Current status
- 4) Potential of a neutrino beam from Protvino to ORCA

News from first ARCA Detection Units

- Optical Module at Antares site, April 2013
 - · Muons from a single DOM, Eur. Phys. J. C (2014) 74:3056
- Mini string (3 DOMs) at ARCA site, May 2014
 - Track reconstruction Eur. Phys. J. C (2016) 76:54 -- Cover

- First full Detection Unit at ARCA site, Dec 2015
- One more DU added in May 2016

News from the first ORCA Detection Unit

deployed in September 2017

Number of events (upgoing):

MC atm neutrinos: 8.33

MC atm. muons : ~ 1

observed : 13

D. Zaborov - KM3NeT

Analysis optimized for vertical upgoing tracks (horizontal tracks suppressed)

A neutrino candidate from ORCA DU-2

May 28, 2018

D. Zaborov - KM3NeT

- 1) Introduction to KM3NeT
 - 2) KM3NeT / ORCA
 - 3) Current status
- 4) Potential of a neutrino beam from Protvino to ORCA

P2O: Protvino to ORCA

- Baseline 2588 km; beam inclination: 11.7° (cos $\theta = 0.2$)
- Deepest point 134 km : 3.3 g/cm3
- First oscillation maximum 5.1 GeV
- Sensitivity to mass hierarchy and CP violation

arXiv:1304.6230 / Adv. High En. Phys. (2013) 782538 http://dx.doi.org/10.1155/2013/782538

arXiv:1803.08017

Protvino accelerator complex

(100 km South of Moscow)

U-70 accelerator constructed in 1967 Now operates at 8 - 15 kW 1-turn fast extraction: 5 µs spill every 9 s

Operated by NRC «Kurchatov Institute» – Institute for High Energy Physics (IHEP), Protvino

Possible location of the neutrino beam line

Simulated Neutrino Beam

Beam spectra from *V. Garkusha*, *F. Novoskoltsev & A. Sokolov*, *Study of Neutrino Oscillations with the U-70 Accelerator Complex*, *IHEP Preprint 2015-5* – beam optimized for Protvino-Gran Sasso (on-axis)

Focus π + (Neutrino beam)

Beam power: 450 kW, 4 * 10²⁰ p.o.t. per year

(for reference: Fermilab-Nova beam is 700 kW)

Expected neutrino rates in ORCA normal mass hierarchy

Calculations with GloBES

After 3 yr of 450 kW beam:

 ν_{μ} CC: ~ 30000 events

 ν_e CC: ~ 8000 events

ν_τ CC: ~ 3500 events

NC: ~ 6000 events

For comparison:

DUNE: \sim 250 ν_e events / yr

33

Vacuum oscillation maximum at E = 5.1 GeV

Most ν_{μ} convert to ν_{τ} which remains largely invisible (CC reaction suppressed by τ mass)

 ν_{μ} \rightarrow ν_{e} transitions are enhanced by the MSW effect, resonance energy 3.8 GeV

May 28, 2018 D. Zaborov - KM3NeT

Sensitivity to CP violation

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.5 sigma after 3 years of 450 kW beam or 15 years of 90 kW beam

Competitive with DUNE!

75% CP Violation Sensitivity

Measurement accuracy of δ_{CP}

NB: this study uses preliminary estimates of systematic uncertainties

P20 sensitivity to mass hierarchy

> 5 sigma after 1 year of 450 kW beam (or 5 years of 100 kW beam)

Summary

- KM3NeT-ARCA will explore the high energy neutrino sky with an unprecedented sensitivity
- KM3NeT-ORCA aims at determining the neutrino mass hierarchy after 3 years of operation
- Both ORCA and ARCA are now under construction
- A neutrino beam from Protvino to ORCA is a promising venue to study leptonic CP violation (competitive with DUNE, T2HK)

Learn more about KM3NeT

- S. Adrián-Martínez et al., Letter of Intent for KM3NeT 2.0, Journal of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016 – arXiv:1601.07459
- http://www.km3net.org/

Backup slides

39

ORCA schedule and funding

Total ORCA cost ≈ 45 M€

Phase 1: 7 strings – 11 M€

Phase 2: 115 strings - fund requests ongoing

Outlook

ORCA will determine the NMO in 3 years with at least 3σ significance

ORCA sensitivity to $\Delta m_{_{32}}^2$ and $\sin^2\theta_{_{23}}$

- High statistics and excellent resolution \rightarrow Measure Δm^2_{32} and $sin^2\theta_{23}$
- Competitive with NOvA and T2K projected sensitivity in 2020
- Expect 2-3% precision in Δm_{32}^2 and 4-10% in $\sin^2\theta_{23}$

Optimal baseline

- Optimal baseline to measure mass hierarchy with beam neutrinos is between 2000 km and 4000 km
- Degeneracy between MH and δ_{CP} for L < 1000 km
- Peak energy follows initially first oscillation maximum at E = 25 GeV * cosθ
- levels off at mantle resonance energy (~ 6 GeV)

Expected neutrino rates in ORCA normal mass hierarchy

Vacuum oscillation maximum at E = 5.1 GeV

Most ν_{μ} convert to ν_{τ} which remains largely invisible (CC reaction suppressed by τ mass)

 ν_{μ} \rightarrow ν_{e} transitions are enhanced by the MSW effect, resonance energy 3.8 GeV

May 28, 2018

Expected neutrino rates in ORCA inverted mass hierarchy

 $V\mu \rightarrow Ve$ transitions suppressed by the MSW effect

If inverted mass hierarchy is true, switch to anti-neutrino beam (for CPV studies)

Multi-Parameter fit of simulated data

- Combined fit of nuisance and oscillation parameters
- No neutrino/anti-neutrino skew
- No spectral index skew
- No energy scale shift

	Parame ter	True value	Prio r	Start value
	θ_{12}	33.4°	fix	fix
	Δm^2 [eV ²]	7.53 10 ⁻	fix	fix
	θ_{13}	8.42°	0.15	8.42°
	θ_{23}	41.5°	1.3°	41.5°
	ΔM^2			2.44 10-3
C	AFy used fo	r ³ CP fits, no	ot for N	MH
	δ _{CP}	many	no	many
	1.12, 20, 2010			2.200101

Parame ter	True value	Prio r	Start value
Norm ν_e	from ν_{μ}	fix	fix
Norm ν_{μ}	1	0.05	1
Norm v_{τ}	1	0.10	1
Norm NC	1	0.05	1
PID	1	0.10	1
V / V	1	fix	fix

Simulated measurement of δ_{CP}

ORCA layout

Construction status: sea infrastructure

Main electro-optical cable deployed December 2014

Node1 (Junction Box) deployed April 2015

Deployment Scheme

Shown is deployment of an ARCA DU (ORCA similar)
First ORCA DU deployed in September 2017

Calibration procedures

Why mass hierarchy is important

- Prime discriminator for theory models
- Helps measuring the CP phase
- Absolute mass scale
- Nature (Dirac vs Majorana)
- Origin of neutrino mass and flavour
- Core-Collapse Supernovae Physics

Impact of <u>direct</u> mass ordering measurement

May 28, 2018 D. Zaborov - KM3NeT 51

Mass hierarchy measurement technicalities

- Pick random values for oscillation parameters and other systematics
- Generate pseudo-experiments for N0, I0 cases
- Find best-fit likelihoods L_{NO} , L_{IO} for the NO, IO cases (maximising w.r.t. 9 free parameters)
- Calculate the log-likelihood ratio log (L_{NO}/L_{IO})

